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Intro: Real-world modeling
• Computers are used to model complex systems in domains such as biology, physics, and neuroscience.
• Real-world phenomena may have random, or stochastic, elements that need to be included in the model.
• Finding optimal parameters to these models provides further insight into the problems.
• For example, when designing an airplane, there are many design alternatives resulting in different perfor-

mances and costs, and design process optimization helps minimize cost and maximize performance.

Stochastic Optimization
• These models can be represented as a mathemat-

ical function with which a minimum or max-
imum value needs to be found.

• These functions can contain hundreds or thou-
sands of input values and take minutes to reach a
final outcome, a single value, and therefore, solv-
ing these functions analytically can be infeasi-
ble.

• Random sampling to find the optimal value is in-
feasible because the set of feasible values can take
years to exhaust.

• Optimization algorithms are used to approxi-
mate a function’s minimum value.

• QNSTOP (quasi-Newton Methods for Stochas-
tic Optimization) is a new algorithm under devel-
opment to help optimize functions with stochastic
elements.

quasi-Newton Methods
quasi-Newton Methods
• Newton methods find zeros of a function using

derivative information.
• quasi-Newton methods estimate derivative in-

formation rather than requiring the user to pro-
vide derivative information.

• Complex computer models and simulations are
difficult to obtain derivative information from,
and quasi-Newton methods provide a reasonable
estimate.

QNSTOP Motivation
• There are many existing approaches to stochastic

optimization. 2 iterative methods are:
– Stochastic approximation (SA). Large

numbers of crude, inexpensive iterations.
Linear approximations of the function con-
structed by coarse finite differencing.

– Response surface methodology
(RSM). Small numbers of carefully
planned, expensive iterations. Linear and
quadratic approximations of the function
constructed by regression experiments.

• QNSTOP is proposed in Brent Castle’s PhD dis-
sertation at Indiana University in 2012 and com-
bines ideas from SA and RSM.

The QNSTOP Algorithm
• Provides global and stochastic modes.

Global optimization in each iteration k.
• Update design and trust region radius τk
• In each iteration k ≥ 0, QNSTOP samples N

points from an experimental design region (ellip-
soid) Ek in Rp centered at ξk with radius τk.

• Obtain a semilocal quadratic approximation

m̂k(X − ξk) =f̂k + ĝTk (X − ξk)

+ (1/2)(X − ξk)T Ĥk(X − ξk)

of the objective function f : Rp → R, where ĝ
and Ĥ are the approximations to the gradient and
Hessian. Ĥ is obtained using the BFGS method

Ĥk = Ĥk−1 +
νkν

T
k

νTk sk
− Ĥk−1sks

T
kHk−1

sTk Ĥk−1sk
,

where νk = ĝk − ĝk−1 and sk = ξk − ξk−1.
• Calculate the Lagrange multiplier of the trust re-

gion subproblem µk by solving [Ĥk + µkWk]sk =
−ĝk, where Wk is the scaling matrix.

• Update the ellipsoid center

ξk+1 =

(
ξk −

[
Ĥk + µkWk

]−1

ĝk

)
Θ

,

where Θ ⊂ Rp is the feasible set.
• Update the scaling matrix

Wk+1 =
(
Ĥk + µkWk

)T
Ṽ −1
k

(
Ĥk + µkWk

)
and design ellipsoid with

Ek+1(χp,1−α) = {X ∈ Rp :

(X − ξk+1)TWk+1(X − ξk+1) ≤ χ2
p,1−α}

Stochastic optimization.
• Similar structure to global optimization.
• Use different updates for τk, Ĥk, and µk better

suited to stochastic optimization.

Contributions
Fortran implementation.
• Matlab was well-suited for prototyping, but is not as suitable for high-end computing as Fortran.
• Modern state of the art mathematical software and real-world models are still implemented in Fortran.
• Fortran is faster and uses less resources than Matlab.
• Fortran provides robust parallelization environments: OpenMP and MPI.

Griewank Test Function
• The Griewank function is used to test optimiza-

tion algorithms and is defined by

f(c) = 1 +

p∑
i=1

c2i
d
−

p∏
i=1

cos

(
ci√
i

)
,

for d > 0. A contour plot is shown below.
• Global minimum: f(0) = 0.
• Plot shows the points sampled by QNSTOP from

a Latin hypercube as dots and the lines show QN-
STOP progression in each iteration.
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Quadratic Dual Function
• Nonconvex and nonsmooth 57-dimensional un-

constrained minimization problem.
• Exact solution of -1866.01.
• Objective function has the form

Q(σ) =
1

2
σTσ −

n∑
i=1

|fi + (BTσ)i|,

where σ, B, and f are defined in [1].
• Plot shows the best value QNSTOP finds f(ξk)

in each iteration k.
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Performance Speedups
Heap Memory Utilization (MiB) vs iterations.
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