Face Recognition for Context-Sensitive IoT Applications

https://github.com/cmusatyalab/openface

Brandon Amos and Mahadev Satyanarayanan
School of Computer Science, Carnegie Mellon University

Introduction

- Many IoT “things” are video cameras
 - Have IP addresses and are configurable
 - Cheap and integrated into mobile devices.
 - High data rates and bandwidth.

Adding context to video-based IoT systems

- Recognizing people is crucial to human context.
- It modulates what you say and how you act.
- Why not add this context to IoT systems?

Towards exploring transient and mobile face recognition, we have created OpenFace as an open source face recognition library.

OpenFace Overview

- Faces are embedded on the unit hypersphere.
- Over 4,000 GitHub stars.

OpenFace Design

- Torch training
- Python preprocessing
- Neural Network
- FaceNet’s Inception Module
- FaceNet embedding
- Triplet Loss
- Trained Neural Network
- Classification

Results: Face Classification

Classification Accuracy

<table>
<thead>
<tr>
<th>Technique</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-level (cropped)</td>
<td>0.9753</td>
</tr>
<tr>
<td>Eigenfaces (no outside data)</td>
<td>0.6002 ± 0.0079</td>
</tr>
<tr>
<td>FaceNet [2]</td>
<td>0.9964 ± 0.009</td>
</tr>
<tr>
<td>DeepFace-ensemble [3]</td>
<td>0.9735 ± 0.0025</td>
</tr>
<tr>
<td>OpenFace</td>
<td>0.9292 ± 0.0134</td>
</tr>
</tbody>
</table>

Results: Face Verification

- Predicts whether 2 faces are the same person [1].

Technique Accuracy

<table>
<thead>
<tr>
<th>Technique</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human-level (cropped)</td>
<td>0.9753</td>
</tr>
<tr>
<td>Eigenfaces (no outside data)</td>
<td>0.6002 ± 0.0079</td>
</tr>
<tr>
<td>FaceNet [2]</td>
<td>0.9964 ± 0.009</td>
</tr>
<tr>
<td>DeepFace-ensemble [3]</td>
<td>0.9735 ± 0.0025</td>
</tr>
<tr>
<td>OpenFace</td>
<td>0.9292 ± 0.0134</td>
</tr>
</tbody>
</table>

References
