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Big picture

What are the “atomic operations” or building blocks of modern Al systems”?

View of the current situation: Matrix-vector products (dense or
sparse/structured), (sub)differentiable non-linear functions, random sampling

This talk: We should consider (convex) optimization as another potential
layer, to be composed with others

Note: we already use optimization in the learning procedures, but we should
also consider it as an operation for inference and control
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Optimization in deep learning

Recently there has been a lot of work in applying more generic
optimization methods within deep learning architectures

Approach 1: Unroll an optimization procedure (like gradient descent) as a
network itself (Domke, 2012; Goodfellow, 2013; Maclaurin et al., 2015;
Belanger and McCallum, 2015; Andrychowicz et al., 2016; Metz et al.,
2017; Gregor and LeCun, 2010)

Approach 2: Directly differentiate through the argmin (Bradley and
Bagnell, 2009; Mairal et al., 2012; Gould et al., 2016; Johnson et al.,
2016; Amos et al., 2016; Barron and Poole, 2016)

« We’re going to use this approach, but consider a bit more general
setting and efficient backpropagation algorithms
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Optimization as a “primitive”

Optimization problems are an extremely powerful paradigm for decision-making

Example: quadratic program A
minimize Ex Qx +q' x
X
subjectto Ax = b
Gx < h

>

Applications in finance (Markowitz portfolio optimization), machine learning
(support vector machines), control (linear-quadratic model predictive control),
geometry (projections onto polyhedra)
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lllustrative Example: Learning Hard Constraints

Given regression data (x, y) generated True constraints (Unknown to the model)

from a constrained optimization problem. . Model’s constraint predictions during training

ldea: Randomly initialize hard constraints in
an OptNet layer and learn them from data
with gradients ‘

y = argmin f(x,z)

Z
subjectto Gz < h .
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Talk Overview

> 1.  Our contribution: OptNet layers

2. gpth: Our efficient and differentiable PyTorch QP solver

3. Experiments

1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku
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Our Contribution: The OptNet Approach

A network where the output of a single layer is the solution to a QP

involving parameters defined by the previous layer z;

1
Zi+1 = argmin EZTQ(ZL')Z +q(z)"z

subject to A(z))z = b(%)
G(Zi)Z < h(Zl')

Learnable parameters: Q,q,4,b,G, h The matrix Q(z;) depends on
the previous layer z;

Can capture much more expressive functions than a single traditional
feedforward layer (polytope of QP has exponential number of points)

Continuous in z; if parameters are all continuous functions, and Q(z;)
strictly positive definite
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Example OptNet Layer

General Definition:

1
Zipp = argmin 5z7Q(z)z +q(z)"z
Z
subject to A(z;)z = b(z;)

G(z)z < h(z)

Parameterization that is always feasible:
« Connect the previous layer only in the linear term q(z;) = z;
« Use a Cholesky sothat Q = LLT + €

* Pick some feasible point z; € Rand sy > 0 and let b = Az, and
h = GZO + So

Learnable parameters: L, A, G, zy, and s,
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Differentiating through OptNet layers

Zipp = argmin 5z7Q(z)z +q(z)" 2
Z

subject to A(z;)z = b(z;)
G(z)z < h(z;)

How do we compute the Jacobians?

0Zi+1 0Zj+1  0Zi41  0Zi41  0Zj41  0Zj41  0Zitq
0z; aQ dq d0A db G dh

We show how to compute these by using implicit differentiation of the KKT
conditions with matrix differentials. (The details are in our paper)
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Talk Overview

1. Our contribution: OptNet layers

> 2. gpth: Our efficient and differentiable PyTorch QP solver

3. Experiments

1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku
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qpth: Our efficient and differentiable PyTorch QP solver

OptNet formulation is slow compared to Linear+Rel U layers, even with highly
optimized solvers

We implemented our own primal-dual interior point algorithm for QPs,
specialized for minibatch processing of multiple same-sized problems using
batch GPU factorization, plus some additional tricks

Nice property: We can backprop through the solver effectively “for free”

Our open source PyTorch library is available at http://locuslab.github.io/gpth

Add a differentiable QP OptNet layer to your PyTorch models with one line of
code with our PyTorch Function after defining the parameters:

z = QPFunction()(Q, p, G, h, A, b
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http://locuslab.github.io/qpth

Timing Results: Comparison to a linear layer

OptNet layers are more expensive but still tractable
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Timing Results: Comparison to Gurobi

Batched QP solvers are crucial for tractability
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Results: MNIST

Only interesting as a sanity check and to show that an OptNet layer
can be added as a layer without harming the training process.

FC6OO FC10- FC10 Softmax - FC6OO FC10- Optnet10 Softmax
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Results: 1D Signal Denoising

Task: Learn a model from data that maps from a noisy signal to a denoised signal.

Total Variation Denoising Approach: Solve the following optimization problem where
D is the differencing operator.

1
z* = argmin E“J’_Z”z +A||DZ||1
Z

OptNet Application: Randomly initialize the differencing operator D and learn it from
data with gradients 0z*/dD

True D Randomly Initialized D Learned D
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Results: Mini-Sudoku

Sudoku can be posed as a constraint-satisfaction optimization problem
* Every row should contain the digits 1-4

* Every column should contain the digits 1-4

« Every partitioned sub-block should contain the digits 1-4

Task: Learn a model from data that maps from unsolved boards to solved
boards.

The OptNet Approach:

Example input/output pair: argmin €||z||2 + p"z

3 Z
subjectto Az =b
1 z 30
4
1 7 _ One-hot encoding
Arbitrary of unsolved puzzle
parameters
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Results: Mini-Sudoku

The OptNet layer exactly learns the mini-Sudoku constraints from datal

Baseline: A deep convolutional feed-forward network
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Convolutional network: Significant train/test gap
OptNet: Small gap, generalizes well
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1. Our contribution: OptNet layers
2. gpth: Our efficient and differentiable PyTorch QP solver

3. Experiments

1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

The full PyTorch source code to reproduce all of our experiments is available online at
https://github.com/locuslab/optnet

Our PyTorch QP solver is freely available online at https://locuslab.github.io/gpth
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