
OptNet:
Differentiable Optimization as a Layer in Neural Networks

Brandon Amos and J. Zico Kolter
Carnegie Mellon University

School of Computer Science

ICML 2017

Big picture
What are the “atomic operations” or building blocks of modern AI systems?

View of the current situation: Matrix-vector products (dense or
sparse/structured), (sub)differentiable non-linear functions, random sampling

This talk: We should consider (convex) optimization as another potential
layer, to be composed with others

Note: we already use optimization in the learning procedures, but we should
also consider it as an operation for inference and control

2ICML 2017 OptNet: Amos and Kolter

Optimization in deep learning

Recently there has been a lot of work in applying more generic
optimization methods within deep learning architectures

Approach 1: Unroll an optimization procedure (like gradient descent) as a
network itself (Domke, 2012; Goodfellow, 2013; Maclaurin et al., 2015;
Belanger and McCallum, 2015; Andrychowicz et al., 2016; Metz et al.,
2017; Gregor and LeCun, 2010)

Approach 2: Directly differentiate through the argmin (Bradley and
Bagnell, 2009; Mairal et al., 2012; Gould et al., 2016; Johnson et al.,
2016; Amos et al., 2016; Barron and Poole, 2016)

• We’re going to use this approach, but consider a bit more general
setting and efficient backpropagation algorithms

3ICML 2017 OptNet: Amos and Kolter

Optimization as a “primitive”

Optimization problems are an extremely powerful paradigm for decision-making

Example: quadratic program

Applications in finance (Markowitz portfolio optimization), machine learning
(support vector machines), control (linear-quadratic model predictive control),
geometry (projections onto polyhedra)

4

x!
minimize

!

1
2
𝑥"𝑄𝑥 + 𝑞"𝑥

subject to 𝐴𝑥 = 𝑏
𝐺𝑥 ≤ ℎ

ICML 2017 OptNet: Amos and Kolter

Illustrative Example: Learning Hard Constraints
True constraints (Unknown to the model)

5

Model’s constraint predictions during training
Given regression data 𝑥, 𝑦 generated
from a constrained optimization problem.

Idea: Randomly initialize hard constraints in
an OptNet layer and learn them from data
with gradients

ICML 2017 OptNet: Amos and Kolter

9𝑦 = argmin
#

𝑓(𝑥, 𝑧)

subject to 𝐺𝑧 ≤ ℎ

Talk Overview

1. Our contribution: OptNet layers

2. qpth: Our efficient and differentiable PyTorch QP solver

3. Experiments
1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

6ICML 2017 OptNet: Amos and Kolter

Our Contribution: The OptNet Approach
A network where the output of a single layer is the solution to a QP
involving parameters defined by the previous layer 𝑧!

𝑧!"# = argmin
$

1
2 𝑧

%𝑄 𝑧! 𝑧 + 𝑞 𝑧! %𝑧

subject to 𝐴 𝑧! 𝑧 = 𝑏 𝑧!
𝐺 𝑧! 𝑧 ≤ ℎ 𝑧!

Learnable parameters: 𝑄, 𝑞, 𝐴, 𝑏, 𝐺, ℎ

Can capture much more expressive functions than a single traditional
feedforward layer (polytope of QP has exponential number of points)

Continuous in 𝑧! if parameters are all continuous functions, and 𝑄 𝑧!
strictly positive definite

7ICML 2017 OptNet: Amos and Kolter

The matrix 𝑄 𝑧! depends on
the previous layer 𝑧!

Example OptNet Layer
General Definition:

𝑧!"# = argmin
$

1
2 𝑧

%𝑄 𝑧! 𝑧 + 𝑞 𝑧! %𝑧

subject to 𝐴 𝑧! 𝑧 = 𝑏 𝑧!
𝐺 𝑧! 𝑧 ≤ ℎ 𝑧!

Parameterization that is always feasible:
• Connect the previous layer only in the linear term 𝑞 𝑧! = 𝑧!
• Use a Cholesky so that 𝑄 = 𝐿𝐿% + 𝜖
• Pick some feasible point 𝑧& ∈ ℝ and 𝑠& > 0 and let 𝑏 = 𝐴𝑧& and

ℎ = 𝐺𝑧& + 𝑠&

Learnable parameters: 𝐿, 𝐴, 𝐺, 𝑧&, and 𝑠&

8ICML 2017 OptNet: Amos and Kolter

Differentiating through OptNet layers
𝑧!"# = argmin

$

1
2
𝑧%𝑄 𝑧! 𝑧 + 𝑞 𝑧! %𝑧

subject to 𝐴 𝑧! 𝑧 = 𝑏 𝑧!
𝐺 𝑧! 𝑧 ≤ ℎ 𝑧!

How do we compute the Jacobians?

&#!"#
&#!

&#!"#
&'

&#!"#
&(

&#!"#
&)

&#!"#
&*

&#!"#
&+

&#!"#
&,

We show how to compute these by using implicit differentiation of the KKT
conditions with matrix differentials. (The details are in our paper)

9ICML 2017 OptNet: Amos and Kolter

Talk Overview

1. Our contribution: OptNet layers

2. qpth: Our efficient and differentiable PyTorch QP solver

3. Experiments
1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

10ICML 2017 OptNet: Amos and Kolter

qpth: Our efficient and differentiable PyTorch QP solver

OptNet formulation is slow compared to Linear+ReLU layers, even with highly
optimized solvers

We implemented our own primal-dual interior point algorithm for QPs,
specialized for minibatch processing of multiple same-sized problems using
batch GPU factorization, plus some additional tricks

Nice property: We can backprop through the solver effectively “for free”

Our open source PyTorch library is available at http://locuslab.github.io/qpth

Add a differentiable QP OptNet layer to your PyTorch models with one line of
code with our PyTorch Function after defining the parameters:

11ICML 2017 OptNet: Amos and Kolter

http://locuslab.github.io/qpth

Timing Results: Comparison to a linear layer

12

OptNet layers are more expensive but still tractable

ICML 2017 OptNet: Amos and Kolter

Timing Results: Comparison to Gurobi

13

Batched QP solvers are crucial for tractability

ICML 2017 OptNet: Amos and Kolter

Talk Overview

1. Our contribution: OptNet layers

2. qpth: Our efficient and differentiable PyTorch QP solver

3. Experiments
1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

14ICML 2017 OptNet: Amos and Kolter

Results: MNIST

Only interesting as a sanity check and to show that an OptNet layer
can be added as a layer without harming the training process.

15

FC600-FC10-FC10-Softmax FC600-FC10-Optnet10-Softmax

ICML 2017 OptNet: Amos and Kolter

Results: 1D Signal Denoising
Task: Learn a model from data that maps from a noisy signal to a denoised signal.

Total Variation Denoising Approach: Solve the following optimization problem where
𝐷 is the differencing operator.

𝑧⋆ = argmin
%

1
2

𝑦 − 𝑧 &
&
+ 𝜆 𝐷𝑧 '

OptNet Application: Randomly initialize the differencing operator 𝐷 and learn it from
data with gradients 𝜕𝑧⋆/𝜕𝐷

16

Randomly Initialized 𝐷

ICML 2017 OptNet: Amos and Kolter

Learned 𝐷True 𝐷

Results: Mini-Sudoku

OptNet: Differentiable Optimization as a Layer in Neural Networks

3
1

4
4 1

2 4 1 3
1 3 2 4
3 1 4 2
4 2 3 1

Figure 6. Example 4x4 Sudoku puzzle, showing initial problem
and solution.

ber 1 through 9. We consider the slightly simpler case of
4x4 Sudoku puzzles, with number in 1 through 4, as shown
in Figure 4.3.

Sudoku is fundamentally a constraint satisfaction problem,
and is trivial for computers to solve when told the rules of
the game. However, if we do not know the rules of the
game, but are only presented with examples of unsolved
and the corresponding solved puzzle, this is a challenging
task. We consider this to be an interesting benchmark task
for algorithms that seek to capture complex strict relation-
ships between all input and output variables. The input to
the algorithm consists of a 4x4 grid (really a 4x4x4 tensor
with a one-hot encoding for known entries an all zeros for
unknown entries), and the desired output is a 4x4x4 tensor
of the one-hot encoding of the solution.

This is a problem where traditional neural networks fail
completely: as a baseline we implemented a multilayer
feedforward network to attempt to solve Sudoku problems
(specifically, we report results for a FC100-FC100-F100-
FC100-Softmax network, though we tried other architec-
tures as well), and found them completely unable to achieve
an error rate lower than 99% on at test set of 1000 exam-
ples, where error here is interpreted as whether or not the
puzzle is solved correctly if assign cell to whichever in-
dex is largest in the predicted encoding). This performance
is shown in Figure 7, showing that the network is able to
decrease the loss function (squared error) somewhat, but
produces no boost in correctly solved puzzles.

We contrast this with the performance of the OptNet net-
work. Here were learn a completely generic QP in so-
called “standard form” with only positivity inequality con-
straints but an arbitrary constraint matrix Ax = b, a small
Q = 0.1I to make sure the problem is strictly feasible, and
with the linear term p simply being the input one-hot en-
coding of the Sudoku problem. We know that Sudoku can

be approximated well with a linear program (indeed, in-
teger programming is a typical solution method for such
problems), but the model here is told nothing about the
rules of Sudoku. Despite this, as shown in Figure 8 after
just three epochs, the algorithm has effectively learned the
game, and can get virtually zero test error with just minor
noise in the learning process. This represents a substantial
advance over the fully connected layers, and we believe
highlights the ability of the OptNet layers to learn com-

Figure 7. Training process of Sudoku with a fully connected net-
work. Error is not show, but never goes below 0.99.

Figure 8. Training process of Sudoku with OptNet. After 3
epochs, the algorithm has effectively learned the game.

plex phenomena that currently elude neural networks. We
know of no other machine learning algorithm that can learn
a game like this solely from data.

5. Conclusion

We have presented OptNet, a neural network architecture
where we use optimization problems as a single layer in
the network. We have derived the algorithmic formula-
tion for differentiating through these layers, allowing for
backpropagating in end-to-end architectures. We have also
developed an efficient batch solver for these optimizations
based upon a primal-dual interior point method, and devel-
oped a method for attaining the necessary gradient informa-
tion “for free” from this approach. Our experiments high-
light the potential power of these networks, showing that
they can solve problems where existing networks are very
poorly suited, such as learning Sudoku problems purely
from data. There are many future directions of research
for these approaches, but we feel that they add another im-
portant primitive to the toolbox of neural network practi-
tioners.

17

argmin
"

𝜖 𝑧 #
+ 𝑝$𝑧

subject to 𝐴𝑧 = 𝑏
𝑧 ≥ 0

One-hot encoding
of unsolved puzzleArbitrary

parameters

Sudoku can be posed as a constraint-satisfaction optimization problem
• Every row should contain the digits 1-4
• Every column should contain the digits 1-4
• Every partitioned sub-block should contain the digits 1-4

Task: Learn a model from data that maps from unsolved boards to solved
boards.

ICML 2017 OptNet: Amos and Kolter

The OptNet Approach:
Example input/output pair:

Results: Mini-Sudoku

18

The OptNet layer exactly learns the mini-Sudoku constraints from data!

Baseline: A deep convolutional feed-forward network

Convolutional network: Significant train/test gap
OptNet: Small gap, generalizes well

ICML 2017 OptNet: Amos and Kolter

% Incorrectly Solved BoardsMSE

The full PyTorch source code to reproduce all of our experiments is available online at
https://github.com/locuslab/optnet

Our PyTorch QP solver is freely available online at https://locuslab.github.io/qpth

OptNet:
Differentiable Optimization as a Layer in Neural Networks

Brandon Amos and J. Zico Kolter
Carnegie Mellon University

School of Computer Science

1. Our contribution: OptNet layers

2. qpth: Our efficient and differentiable PyTorch QP solver

3. Experiments
1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

@brandondamos

@zicokolter

https://github.com/locuslab/optnet
https://locuslab.github.io/qpth

