OptNet:

Differentiable Optimization as a Layer in Neural Networks

Brandon Amos and J. Zico Kolter
Carnegie Mellon University
School of Computer Science

ICML 2017

Big picture

What are the “atomic operations” or building blocks of modern Al systems”?

View of the current situation: Matrix-vector products (dense or
sparse/structured), (sub)differentiable non-linear functions, random sampling

This talk: We should consider (convex) optimization as another potential
layer, to be composed with others

Note: we already use optimization in the learning procedures, but we should
also consider it as an operation for inference and control

ICML 2017 OptNet: Amos and Kolter 2

Optimization in deep learning

Recently there has been a lot of work in applying more generic
optimization methods within deep learning architectures

Approach 1: Unroll an optimization procedure (like gradient descent) as a
network itself (Domke, 2012; Goodfellow, 2013; Maclaurin et al., 2015;
Belanger and McCallum, 2015; Andrychowicz et al., 2016; Metz et al.,
2017; Gregor and LeCun, 2010)

Approach 2: Directly differentiate through the argmin (Bradley and
Bagnell, 2009; Mairal et al., 2012; Gould et al., 2016; Johnson et al.,
2016; Amos et al., 2016; Barron and Poole, 2016)

« We’re going to use this approach, but consider a bit more general
setting and efficient backpropagation algorithms

ICML 2017 OptNet: Amos and Kolter

Optimization as a “primitive”

Optimization problems are an extremely powerful paradigm for decision-making

Example: quadratic program A
minimize Ex Qx +q' x
X
subjectto Ax = b
Gx < h

>

Applications in finance (Markowitz portfolio optimization), machine learning
(support vector machines), control (linear-quadratic model predictive control),
geometry (projections onto polyhedra)

ICML 2017 OptNet: Amos and Kolter 4

lllustrative Example: Learning Hard Constraints

Given regression data (x, y) generated True constraints (Unknown to the model)

from a constrained optimization problem. . Model’s constraint predictions during training

ldea: Randomly initialize hard constraints in
an OptNet layer and learn them from data
with gradients ‘

y = argmin f(x,z)

Z
subjectto Gz < h .

ICML 2017 OptNet: Amos and Kolter 5

Talk Overview

> 1. Our contribution: OptNet layers

2. gpth: Our efficient and differentiable PyTorch QP solver

3. Experiments

1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

ICML 2017 OptNet: Amos and Kolter

Our Contribution: The OptNet Approach

A network where the output of a single layer is the solution to a QP

involving parameters defined by the previous layer z;

1
Zi+1 = argmin EZTQ(ZL')Z +q(z)"z

subject to A(z))z = b(%)
G(Zi)Z < h(Zl')

Learnable parameters: Q,q,4,b,G, h The matrix Q(z;) depends on
the previous layer z;

Can capture much more expressive functions than a single traditional
feedforward layer (polytope of QP has exponential number of points)

Continuous in z; if parameters are all continuous functions, and Q(z;)
strictly positive definite

ICML 2017 OptNet: Amos and Kolter 7

Example OptNet Layer

General Definition:

1
Zipp = argmin 5z7Q(z)z +q(z)"z
Z
subject to A(z;)z = b(z;)

G(z)z < h(z)

Parameterization that is always feasible:
« Connect the previous layer only in the linear term q(z;) = z;
« Use a Cholesky sothat Q = LLT + €

* Pick some feasible point z; € Rand sy > 0 and let b = Az, and
h = GZO + So

Learnable parameters: L, A, G, zy, and s,

ICML 2017 OptNet: Amos and Kolter 8

Differentiating through OptNet layers

Zipp = argmin 5z7Q(z)z +q(z)" 2
Z

subject to A(z;)z = b(z;)
G(z)z < h(z;)

How do we compute the Jacobians?

0Zi+1 0Zj+1 0Zi41 0Zi41 0Zj41 0Zj41 0Zitq
0z; aQ dq d0A db G dh

We show how to compute these by using implicit differentiation of the KKT
conditions with matrix differentials. (The details are in our paper)

ICML 2017 OptNet: Amos and Kolter

Talk Overview

1. Our contribution: OptNet layers

> 2. gpth: Our efficient and differentiable PyTorch QP solver

3. Experiments

1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

ICML 2017 OptNet: Amos and Kolter

10

qpth: Our efficient and differentiable PyTorch QP solver

OptNet formulation is slow compared to Linear+Rel U layers, even with highly
optimized solvers

We implemented our own primal-dual interior point algorithm for QPs,
specialized for minibatch processing of multiple same-sized problems using
batch GPU factorization, plus some additional tricks

Nice property: We can backprop through the solver effectively “for free”

Our open source PyTorch library is available at http://locuslab.github.io/gpth

Add a differentiable QP OptNet layer to your PyTorch models with one line of
code with our PyTorch Function after defining the parameters:

z = QPFunction()(Q, p, G, h, A, b

ICML 2017 OptNet: Amos and Kolter 11

http://locuslab.github.io/qpth

Timing Results: Comparison to a linear layer

OptNet layers are more expensive but still tractable

101 E— rF D T SR [t JEEEEs RS E |
BEm lLinear Forward == Linear Backward!
10° 3 QP Forward QP Backward |----- --------- =
7 i ' — ' :
~— 101 . e I K) e .]
Q
§ 10'2 — ---------------- & B E
2 . Ba Ba BB BRI
5 10°F - N = BER f4 2 .
c L : :
o gl o o 1 ol
107 _ | o _
10 50 100 500

Number of Variables (and Inequality Constraints)

ICML 2017 OptNet: Amos and Kolter 12

Timing Results: Comparison to Gurobi

Batched QP solvers are crucial for tractability

101 : I _ | !
- W= Gurobi :

- : m QOurs Serial ‘
i’l 100 BEm Ours Batched | IS
) ;
-
._E
S (R TP | | Ew | e
'a ol

107

1 64 128
Batch Size

ICML 2017 OptNet: Amos and Kolter 13

Talk Overview

1. Our contribution: OptNet layers

2. gpth: Our efficient and differentiable PyTorch QP solver

> 3. Experiments

1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

ICML 2017 OptNet: Amos and Kolter

14

Results: MNIST

Only interesting as a sanity check and to show that an OptNet layer
can be added as a layer without harming the training process.

FC6OO FC10- FC10 Softmax - FC6OO FC10- Optnet10 Softmax

0 50 100 150 200

ICML 2017 OptNet: Amos and Kolter

Results: 1D Signal Denoising

Task: Learn a model from data that maps from a noisy signal to a denoised signal.

Total Variation Denoising Approach: Solve the following optimization problem where
D is the differencing operator.

1
z* = argmin E“J’_Z”z +A||DZ||1
Z

OptNet Application: Randomly initialize the differencing operator D and learn it from
data with gradients 0z*/dD

True D Randomly Initialized D Learned D

ICML 2017 OptNet: Amos and Kolter 16

Results: Mini-Sudoku

Sudoku can be posed as a constraint-satisfaction optimization problem
* Every row should contain the digits 1-4

* Every column should contain the digits 1-4

« Every partitioned sub-block should contain the digits 1-4

Task: Learn a model from data that maps from unsolved boards to solved
boards.

The OptNet Approach:

Example input/output pair: argmin €||z||2 + p"z

3 Z
subjectto Az =b
1 z 30
4
1 7 _ One-hot encoding
Arbitrary of unsolved puzzle
parameters

ICML 2017 OptNet: Amos and Kolter 17

Results: Mini-Sudoku

The OptNet layer exactly learns the mini-Sudoku constraints from datal

Baseline: A deep convolutional feed-forward network

M§E % Incorrectly Solved Boards

! ! ! ! ! ! T

R 10° -

-

i R 10'3:-L I I i VANY L M J
0 2 4 6 8 10 12 14 16;°18 O 2 4 6 8 10 12 14 16 18
Epoch Epoch
=== Conv Train Cony Test === QOptNet Train OptNet Test

Convolutional network: Significant train/test gap
OptNet: Small gap, generalizes well

ICML 2017 OptNet: Amos and Kolter 18

OptNet:

Differentiable Optimization as a Layer in Neural Networks

Brandon Amos and J. Zico Kolter , @brandondamos
Carnegie Mellon University |
School of Computer Science Y @zicokolter

1. Our contribution: OptNet layers
2. gpth: Our efficient and differentiable PyTorch QP solver

3. Experiments

1. MNIST
2. 1D Signal Denoising
3. Mini-Sudoku

The full PyTorch source code to reproduce all of our experiments is available online at
https://github.com/locuslab/optnet

Our PyTorch QP solver is freely available online at https://locuslab.github.io/gpth

https://github.com/locuslab/optnet
https://locuslab.github.io/qpth

