The Differentiable Cross-Entropy Method

Brandon Amos¹ Denis Yarats¹² ¹Facebook Al Research ²New York University ICML 2020

The cross-entropy method is a powerful optimizer

Iterative sampling-based optimizer that:

- 1. Samples from the domain
- 2. Observes the function's values
- 3. Updates the sampling distribution

Widely used in control and model-based RL

Problem: CEM breaks end-to-end learning

A common learning pipeline, e.g. for control, is

- 1. Fit models with maximum likelihood
- 2. Run CEM on top of the learned models
- 3. Hope CEM induces reasonable downstream performance

Objective mismatch issue: models are unaware of downstream performance

The Differentiable Cross-Entropy Method (DCEM)

Differentiate backwards through the sequence of samples Using **differentiable top-k** (LML) and **reparameterization**

Useful when a fixed point is **hard to find,** or when unrolling gradient descent hits a local optimum

A differentiable controller in the RL setting

Method: The differentiable-cross entropy method

Applications

Learning deep energy-based models Learning embedded optimizers Control

Foundation: The Implicit Function Theorem

[Dini 1877, Dontchev and Rockafellar 2009]

Given g(x, y) and f(x) = g(x, y'), where $y' \in \{y: g(x, y) = 0\}$

How can we compute $D_x f(x)$?

The Implicit Function Theorem gives

$$D_x f(x) = -D_y g(x, f(x))^{-1} D_x g(x, f(x))$$

under mild assumptions

Foundation: Differentiable top-k operations

[Constrained softmax, constrained sparsemax, Limited Multi-Label Projection]

The Differentiable Cross-Entropy Method

In each iteration, update a distribution g_{ϕ} with:

 $\begin{bmatrix} X_{t,i} \end{bmatrix}_{i=1}^{N} \sim g_{\phi_t}(\cdot) & \text{Sample from the domain} \\ v_{t,i} = f_{\theta}(X_{t,i}) & \text{Observe the function values} \\ \mathcal{I}_t = \Pi_{\mathcal{L}_k}(v_t/\tau) & \text{Compute the differentiable top-k} \\ \text{Update } \phi_{t+1} \text{ with maximum weighted likelihood}$

And finally return $\mathbb{E}[g_{\phi_{T+1}}(\cdot)]$

Captures vanilla CEM when the soft top-k is hard Composed of operations with **informative derivatives**

Method: The differentiable-cross entropy method

Applications Learning deep energy-based models Learning embedded optimizers Control

Deep Structured Energy Models (SPENs/ICNNs)

[Belanger and McCallum, 2016, Amos, Xu, and Kolter, 2017]

Key idea: Model $p(x, y) \propto \exp\{-E_{\theta}(x, y)\}$ where E_{θ} is a deep energy model

Captures **non-trivial structures** in the output space, while also subsuming feed-forward modes Feedforward model: $E(x, y) = ||f(x) - y||_2^2$

Predict with the optimization problem:

$$\hat{y} = \underset{y}{\operatorname{argmin}} E_{\theta}(x, y)$$

Learning can be done by unrolling optimization on E_{θ} using derivative information $\nabla_{v}E$

Unrolling gradient descent may learn bad energies

Unrolling optimizers lose the probabilistic interpretation and can overfit to the optimizer

In this regression setting, GD learns barriers on the energy surface while DCEM fits the data

Method: The differentiable-cross entropy method

Applications

Learning deep energy-based models Learning embedded optimizers Control

DCEM can exploit the solution space structure

Method: The differentiable-cross entropy method

Applications

Learning deep energy-based models Learning embedded optimizers **Control**

Should RL policies have a system dynamics model or not?

Model-free RL

More general, doesn't make as many assumptions about the world Rife with poor data efficiency and learning stability issues

Model-based RL (or control)

A useful prior on the world if it lies within your set of assumptions

Model Predictive Control

Differentiable Control via DCEM

A pure **planning problem** given (potentially non-convex) **cost** and **dynamics**:

$$\begin{aligned} \tau_{1:T}^{\star} &= \underset{\tau_{1:T}}{\operatorname{argmin}} \sum_{t} C_{\theta}(\tau_{t}) \operatorname{Cost} \\ \text{subject to } x_{1} &= x_{\text{init}} \\ x_{t+1} &= f_{\theta}(\tau_{t}) \operatorname{Dynamics} \\ \underline{u} &\leq u \leq \overline{u} \end{aligned}$$
where $\tau_{t} = \{x_{t}, u_{t}\}$

Idea: Solve this optimization problem with DCEM and differentiate through it

Differentiable Control via DCEM

What can we do with this now?

Augment neural network policies in model-free algorithms with MPC policies Fight objective mismatch by end-to-end learning dynamics The cost can also be end-to-end learned! No longer need to hard-code in values

Caveat: Control problems are often intractably high-dimensional, so we use embedded DCEM

DCEM fine-tunes highly non-convex controllers

The Differentiable Cross-Entropy Method

Brandon Amos¹ Denis Yarats¹² ¹Facebook Al Research ²New York University ICML 2020