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Normalizing flows are powerful models
• Model a differentiable, invertible flow  such that
fθ

pY( fθ(x)) = pX(x)
∂fθ(x)

∂x

−1

Open problem: How to best-model ?f

Convex Potential Maps

Glow

f(x)

pX(x) pY( f(x))



How to best-model the flow?

• The Jacobian determinant  needs to be invertible 

• Leads to specialized architectures (RealNVP, NICE, Glow, MAF, IAF)


• Challenge: Ensuring the flow is universal


• Does the model have the capacity to model any distribution?

|∂f(x)/∂x |



Motivation: Surfaces and Riemannian Manifolds

• Many physical phenomena live in non-Euclidean geometries 

• Riemannian manifolds are locally-Euclidean surfaces


• Let's model and learn distributions on them!

ShapeNet



This talk: Convex optimization and flows

• Convex Potential Flows with Input-Convex Neural Networks


• Riemannian Optimal Transportation


• Riemannian Convex Potential Maps

https://arxiv.org/abs/2012.05942
https://arxiv.org/abs/1609.07152
https://www.springer.com/gp/book/9783540710493
https://arxiv.org/abs/2106.10272


Published as a conference paper at ICLR 2021

CONVEX POTENTIAL FLOWS:
UNIVERSAL PROBABILITY DISTRIBUTIONS WITH
OPTIMAL TRANSPORT AND CONVEX OPTIMIZATION

Chin-Wei Huang
University of Montreal & Mila
chin-wei.huang@umontreal.ca

Ricky T. Q. Chen
University of Toronto & Vector Institute
rtqichen@cs.toronto.edu

Christos Tsirigotis
University of Montreal & Mila
christos.tsirigotis@umontreal.ca

Aaron Courville
University of Montreal, Mila & CIFAR Fellow
aaron.courville@umontreal.ca

ABSTRACT

Flow-based models are powerful tools for designing probabilistic models with
tractable density. This paper introduces Convex Potential Flows (CP-Flow), a
natural and efficient parameterization of invertible models inspired by the opti-
mal transport (OT) theory. CP-Flows are the gradient map of a strongly convex
neural potential function. The convexity implies invertibility and allows us to re-
sort to convex optimization to solve the convex conjugate for efficient inversion.
To enable maximum likelihood training, we derive a new gradient estimator of the
log-determinant of the Jacobian, which involves solving an inverse-Hessian vector
product using the conjugate gradient method. The gradient estimator has constant-

memory cost, and can be made effectively unbiased by reducing the error tolerance
level of the convex optimization routine. Theoretically, we prove that CP-Flows
are universal density approximators and are optimal in the OT sense. Our empiri-
cal results show that CP-Flow performs competitively on standard benchmarks of
density estimation and variational inference.

1 INTRODUCTION

Normalizing flows (Dinh et al., 2014; Rezende & Mohamed, 2015) have recently gathered much
interest within the machine learning community, ever since its recent breakthrough in modelling
high dimensional image data (Dinh et al., 2017; Kingma & Dhariwal, 2018). They are characterized
by an invertible mapping that can reshape the distribution of its input data into a simpler or more
complex one. To enable efficient training, numerous tricks have been proposed to impose structural
constraints on its parameterization, such that the density of the model can be tractably computed.

We ask the following question: “what is the natural way to parameterize a normalizing flow?” To
gain a bit more intuition, we start from the one-dimension case. If a function f : R ! R is
continuous, it is invertible (injective onto its image) if and only if it is strictly monotonic. This
means that if we are only allowed to move the probability mass continuously without flipping the
order of the particles, then we can only rearrange them by changing the distance in between.

In this work, we seek to generalize the above intuition of monotone rearrangement in 1D. We do
so by motivating the parameterization of normalizing flows from an optimal transport perspective,
which allows us to define some notion of rearrangement cost (Villani, 2008). It turns out, if we
want the output of a flow to follow some desired distribution, under mild regularity conditions,
we can characterize the unique optimal mapping by a convex potential (Brenier, 1991). In light
of this, we propose to parameterize normalizing flows by the gradient map of a (strongly) convex
potential. Owing to this theoretical insight, the proposed method is provably universal and optimal;
this means the proposed flow family can approximate arbitrary distributions and requires the least
amount of transport cost. Furthermore, the parameterization with convex potentials allows us to
formulate model inversion and gradient estimation as convex optimization problems. As such, we

1

ar
X

iv
:2

01
2.

05
94

2v
2 

 [c
s.L

G
]  

23
 F

eb
 2

02
1



Background: Optimal Transport

• Optimal transport seeks to find an optimal 
coupling  between measures  and 


• Monge's formulation: Represent the coupling as 
a map  and find the minimum cost one:


     

π α β

π

min
π:π(α)∼pβ

𝔼α∼pα [c(α, π(α))]
(Source: Computational Optimal Transport)



Brenier's  Theorem

• Celebrated result in optimal transport 🎉 


• Monge problems can be solved using gradients of a convex function 

• I.e.,  

• Idea: Construct a flow using (gradients of) convex functions

π(x) = ∇G(x)

Model with input-convex neural networks

(Source: Convex potential flows)
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make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
all quantities of interest.

In terms of the benefits of parameterizing a flow as a gradient field, the convex potential is an
Rd

! R function, which is different from most existing discrete-time flows which are Rd
! Rd.

This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.

2 BACKGROUND: NORMALIZING FLOWS AND OPTIMAL TRANSPORT

Normalizing flows are characterized by a differentiable, invertible neural network f such that the
probability density of the network’s output can be computed conveniently using the change-of-
variable formula

pY (f(x)) = pX(x)

����
@f(x)

@x

����
�1

() pY (y) = pX(f�1(y))

����
@f

�1(y)

@y

���� (1)

where the Jacobian determinant term captures the local expansion or contraction of the density near
x (resp. y) induced by the mapping f (resp. f

�1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.
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Input-Convex Neural Networks
• Fact: ReLU neural nets represent non-convex piecewise linear function 

 
 
 
 

• Idea: Constrain them to (universally) represent convex functions 
 
 
 
 



How to achieve input convexity?

• Most networks can be "trivially" modified to guarantee input-convexity 

• Consider a simple feedforward -layer ReLU network: (for )





• Theorem.  is convex in  provided that the  are non-negative for 


• Any convex and non-decreasing activation function has this property

k i = 1,…, k

zi+1 = max {0,Wizi + bi} f(x; θ) = zk + 1 z1 = x

f y Wi i > 1



Summary: Convex Potential Flows



Convex Potential Flows are Universal

1. ICNNs model the gradient of any convex function


2. Apply Brenier's theorem (any flow is the gradient of a convex function)



Related work on Euclidean convex potential flows

1. Korotin et al. "Wasserstein-2 Generative Networks." 2019.


2. Taghvaei & Jalali. "2-wasserstein approximation via restricted convex 
potentials with application to improved training for gans." 2019.


3. Makkuva et al. "Optimal transport mapping via input convex neural 
networks." 2019.


4. Finlay et al. "Learning normalizing flows from Entropy-Kantorovich 
potentials." 2020.
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Riemannian Optimal Transport
• Given source  and target  measures on manifolds find an (OT) map 

pushing source to target.
μ ν

argmin
t:t#μ=ν ∫ℳ

c[x, t(x)]dμ

μ ν



c-convexity 
• Standard convexity is just for Euclidean spaces


• c-convexity is an extension that can be applied to Riemannian manifolds [Villani 2009]


• The cost  can be, e.g., a manifold distance


• Definitions. Let  be a function and  be sets.


•  is -convex if it can be written as  for all 


• The -transform of  is 

c : 𝒳 × 𝒴 → (−∞, + ∞]

ψ 𝒳, 𝒴

ψ c ψ(x) = supy (ζ(y) − c(x, y)) x

c ψ ψc(y) = infx (ψ(x) + c(x, y))



Connecting c-convexity and Euclidean convexity

• Captures Euclidean convexity with 


• The -transform becomes the Legendre transform  


• -convexity definition:  is -convex if it can be represented as the convex 
conjugate of another function 

c(x, y) = − x⊤y

c ψc(y) = infx (ψ(x) − x⊤y)
c ψ c

ζ



• Brenier's theorem was originally for 
Euclidean spaces with quadratic costs


• Monge transport map can be 
represented as  with  convex


• McCann's result extends it to Riemannian 
spaces using -convexity


•  with  -convex

t(x) = ∇ϕ ϕ

c

t(x) = exp(∇ϕ) ϕ c

McCann's Extension to Brenier's  Theorem
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Summary: Riemannian Extension of Convex Potential Flows



Our -convex potential: Semidiscrete OTc
• Our semidiscrete OT on manifolds 
    Use discrete -concave potentials of the formc ϕ(x) = min

i∈[n]
c(x, yi) + αi

Learnable parameters
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Abstract

Modeling distributions on Riemannian manifolds
is a crucial component in understanding non-
Euclidean data that arises, e.g., in physics and
geology. The budding approaches in this space
are limited by representational and computational
tradeoffs. We propose and study a class of flows
that uses convex potentials from Riemannian opti-
mal transport. These are universal and can model
distributions on any compact Riemannian mani-
fold without requiring domain knowledge of the
manifold to be integrated into the architecture. We
demonstrate that these flows can model standard
distributions on spheres, and tori, on synthetic and
geological data. Our source code is freely avail-
able online at github.com/facebookresearch/rcpm.

1. Introduction

Today’s generative models have had wide-ranging successes
of modeling non-trivial probability distributions that nat-
urally arise in fields such as physics (Köhler et al., 2019;
Rezende et al., 2019), climate science (Mathieu & Nickel,
2020), and reinforcement learning (Haarnoja et al., 2018).
Generative modeling on “straight” spaces (i.e., Euclidean)
are pretty well-developed and include (continuous) normal-
izing flows (Rezende & Mohamed, 2015; Dinh et al., 2016;
Chen et al., 2018), generative adversarial networks (Good-
fellow et al., 2014), and variational auto-encoders (Kingma
& Welling, 2014; Rezende et al., 2014).

In many applications however, data resides on spaces with
more complicated structure, e.g., Riemannian manifolds
such as spheres, tori, and cylinders. Using Euclidean gener-
ative models on this data is problematic from two aspects:
first, Euclidean models will allocate mass in “infeasible”
areas of the space; and second, Euclidean models will often

*Equal contribution 1University College London 2Facebook
AI Research 3Weizmann Institute of Science. Correspondence
to: Samuel Cohen <samuel.cohen.19@ucl.ac.uk>, Brandon
Amos <brandon.amos.cs@gmail.com>, Yaron Lipman <ylip-
man@fb.com,yaron.lipman@weizmann.ac.il>.

Proceedings of the 38 th
International Conference on Machine

Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Figure 1. Illustration of a discrete c-concave function � (blue) over
a base manifold M (bold line). These consist of discrete compo-
nents {↵i, yi} and have a Riemannian gradient r� 2 TxM.

need to squeeze mass in zero volume subspaces. Moreover,
knowledge of the space geometry can improve the learning
process by incorporating an efficient geometric inductive
bias as part of the modeling and learning pipeline.

Flow-based generative models are the state-of-the-art in
Euclidean settings and are starting to be extended to Rie-
mannian manifolds (Rezende et al., 2020; Mathieu & Nickel,
2020; Lou et al., 2020). However, in contrast with some
models in the Euclidean case (Kong & Chaudhuri, 2020;
Huang et al., 2020), the representational capacity and uni-
versality of these models is not well-understood. Some of
these approaches are efficiently tailored to specific choices
of manifolds, but the methods and theory of flows on general
Riemannian manifolds are not well-understood.

In this paper we introduce the Riemannian Convex Potential
Map (RCPM), a generic model for generative modeling on
arbitrary Riemannian manifolds that enjoys universal repre-
sentational power. RCPM (illustrated in fig. 2) is based on
Optimal Transport (OT) over Riemannian manifolds (Mc-
Cann, 2001; Villani, 2008; Sei, 2013; Rezende et al., 2020)
and generalizes the convex potential flows in the Euclidean
setting by Huang et al. (2020). We prove that RCPMs
are universal on any compact Riemannian manifold, which
comes from the fact that our discrete c-concave potential
functions are universal. Our experimental demonstrations
show that RCPMs are competitive and model standard dis-
tributions on spheres and tori. We further show a case study
in modeling continental drift where we transport Earth’s
land mass on the sphere.



Theory: Universality
Theorem 1: For compact, boundaryless, smooth manifolds, 

  is dense in .{f | f(x) = min
i∈[n]

c(x, yi) + αi} {f | f is c-concave}

Theorem 2: If  are regular, there exists a sequence of 
discrete c-concave potentials  such that  

where t is the OT map.

μ, ν
ϕϵ exp[ − ∇ϕϵ]

p t



Implementation Details
• Map architecture: stack of multiple blocks of the form





• Smoothing: applied to discrete c-concave layers 


      


• Loss: standard density estimation losses (NLL, KL) 

sj(yj) = exp[ − ∇yj
ϕj(yj)], j = 1,…, T

min
γ

(a1, …, an) = − γ log
n

∑
i=1

exp −
ai

γ



Results

Geodesics Estimation

Density Transportation

Density Estimation



Related work on exponential map flows
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