
Brandon Amos1 Samuel Stanton2 Denis Yarats1,2 Andrew Gordon Wilson2

1Facebook AI Research    2NYU

On the model-based stochastic value gradient 
for continuous reinforcement learning

L4DC 2021



Focus: Model-based methods for continuous control
Budding with methods and applications

But rife with problems Spoiler: We don’t solve these
E.g., objective mismatch, short-horizon bias, inaccurate models, accumulating errors
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Table 1: Key differences between related work on imagination, value-expansion, and policy
distillation for continuous control. We use MVE to denote some form of value-
expansion, which may not necessarily have an explicit terminal value approximation.

Policy Learning Value Learning Dynamics
Update Objective Model Ensemble Observation Space

PILCO (Deisenroth and Rasmussen, 2011) G MBPG - GP No Proprio
MVE (Feinberg et al., 2018) G MF MVE Det NN No Proprio
STEVE (Buckman et al., 2018) G MF MVE Prob NN Yes Proprio
IVG (Byravan et al., 2019) G MVE MF Det NN No Pixel+Proprio
Dreamer (Hafner et al., 2019) G MVE MVE Prob NN No Pixel

GPS (Levine and Koltun, 2013) BC MVE - Local No Proprio
POPLIN (Wang and Ba, 2019) BC MVE - Prob NN Yes Proprio

METRPO (Kurutach et al., 2018) G MF+rollout data MF+rollout data Det NN Yes Proprio
MBPO (Janner et al., 2019) G MF+rollout data MF+rollout data Prob NN Yes Proprio

SAC (Haarnoja et al., 2018) G MF MF -
SAC-SVG(H) — this paper G MVE MF Det NN No Proprio
G=Gradient-based BC=Behavioral Cloning MF=Model Free MVE=Model-Based Value Expansion GP=Gaussian Process

found in the literature. If bootstrapped value estimates are not used, and the model fulfills
functions (1) and (2), one obtains a generalized form of PILCO (Deisenroth and Rasmussen,
2011). Introducing bootstrapped value estimates and removing (1), one obtains the value
gradient (Heess et al., 2015; Byravan et al., 2019; Hafner et al., 2019; Clavera et al., 2020).
The model with (1) can also be used in a search procedure (Springenberg et al., 2020; Marino
et al., 2020). Conversely if (1) is retained and (2) is removed, the MVE method (Feinberg
et al., 2018) is recovered. Dyna-Q (Sutton, 1990) is an early method which uses the model
exclusively for (3), followed more recently by NAF (Gu et al., 2016), ME-TRPO (Kurutach
et al., 2018), and MBPO (Janner et al., 2019). Other contributions focus on the effect of
ensembling some or all of the learned models, such as PETS (Chua et al., 2018), STEVE
(Buckman et al., 2018), and POPLIN (Wang and Ba, 2019). We overview the current state of
the literature and summarize some key dimensions in table 1. Our paper fits into this space
of related work to show that if set up correctly, the value gradient is a competitive baseline.

We have focused this section on continuous spaces and refer to Schrittwieser et al. (2020);
Hamrick et al. (2020) for further discussions and related work in discrete spaces.

3. Preliminaries, notation, and background in reinforcement learning

Here we present the non-discounted setting for brevity and refer to Thomas (2014); Haarnoja
et al. (2018) for the full details behind the �-discounted setting.

3.1. Markov decision processes and reinforcement learning

A Markov decision process (MDP) (Szepesvári, 2010; Puterman, 2014) is a discrete-time
stochastic control process widely used in robotics and industrial systems. We represent an
MDP as the tuple (X ,U , p, r), where X is the state space, U is the control or action space,
the transition dynamics p := Pr(xt+1|xt, ut) capture the distribution over the next state
xt+1 given the current state xt and control ut, r : X ⇥ U ! R is the reward map. The
termination map d : X ⇥ U ! [0, 1] indicates the probability of the system terminating after
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Background: The Stochastic Value Gradient
Learn a stochastic policy 𝜋! with gradient of a value estimate:

∇!𝔼"! 𝑉! 𝑥#
Value estimate can be model-based, model-free, or both
Can also add an entropy penalty to the actions
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Heess et al. (NeurIPS 2015)

Control space (fixed 𝒙𝒕)Parameter space



Background: The Soft Actor-Critic
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SAC-SVG(H): A model-based SAC extension
Observation (S4.1 of our paper). The soft actor-critic (SAC) policy update is just a value gradient 
with a model-free value estimate and entropy regularization

Idea: Replace SAC’s value estimate with a more accurate model-based expansion for H steps.

Also use a simple recurrent dynamics model (no ensembling)
trained for multi-step predictions
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SAC-SVG(0): equivalent to SAC
Model-free value estimate

SAC-SVG(H) when H>0
Model-based value expansion with model-free estimate at the end
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SAC-SVG excels in locomotion tasks
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Table 2: SAC-SVG(H) excels in the locomotion tasks considered in Wang and Ba (2019).
We report the mean evaluation rewards and standard deviations across ten trials.

th
is

pa
pe

r

Ant Hopper Swimmer Cheetah Walker2d PETS Cheetah

SAC-SVG(1) 3691.00 ± 1096.77 1594.43 ± 1689.01 348.40 ± 8.32 6890.20 ± 1860.49 -291.54 ± 659.52 5321.23 ± 1507.00
SAC-SVG(2) 4473.36 ± 893.44 2851.90 ± 361.07 350.22 ± 3.63 8751.76 ± 1785.66 447.68 ± 1139.51 5799.59 ± 1266.93
SAC-SVG(3) 3833.12 ± 1418.15 2024.43 ± 1981.51 340.75 ± 13.46 9220.39 ± 1431.77 877.77 ± 1533.08 5636.93 ± 2117.52
SAC-SVG(4) 2896.77 ± 1444.40 2062.16 ± 1245.33 348.03 ± 6.35 8175.29 ± 3226.04 1852.18 ± 967.61 5807.69 ± 1008.60
SAC-SVG(5) 3221.66 ± 1576.25 608.58 ± 2105.60 340.99 ± 4.58 6129.02 ± 3519.98 1309.20 ± 1281.76 4896.22 ± 1033.33
SAC-SVG(10) 1389.30 ± 981.59 -2511.05 ± 881.26 303.16 ± 10.57 2477.25 ± 2596.43 -2328.08 ± 735.48 4248.25 ± 802.54
POPLIN-P (Wang and Ba, 2019) 2330.1 ± 320.9 2055.2 ± 613.8 334.4 ± 34.2 4235.0 ± 1133.0 597.0 ± 478.8 12227.9 ± 5652.8
SAC* (Haarnoja et al., 2018) 548.1 ± 146.6 788.3 ± 738.2 204.6 ± 69.3 3459.8 ± 1326.6 164.5 ± 1318.6 1745.9 ± 839.2
SAC (our run) 510.56 ± 76.38 2180.33 ± 977.30 351.24 ± 5.27 6514.83 ± 1100.61 1265.13 ± 1317.00 3259.99 ± 1219.94
PETS* (Chua et al., 2018) 1165.5 ± 226.9 114.9 ± 621.0 326.2 ± 12.6 2288.4 ± 1019.0 282.5 ± 501.6 4204.5 ± 789.0
METRPO* (Kurutach et al., 2018) 282.2 ± 18.0 1272.5 ± 500.9 225.5 ± 104.6 2283.7 ± 900.4 -1609.3 ± 657.5 -744.8 ± 707.1
TD3* (Fujimoto et al., 2018c) 870.1 ± 283.8 1816.6 ± 994.8 72.1 ± 130.9 3015.7 ± 969.8 -516.4 ± 812.2 218.9 ± 593.3

Training Timesteps 200000 200000 50000 200000 200000 50000
*Denotes the baseline results reported in Wang and Ba (2019).

5. Experimental results on MuJoCo locomotion control tasks1

We evaluate SAC-SVG(H) on all of the MuJoCo (Todorov et al., 2012) locomotion exper-
iments considered by POPLIN, MBPO, and STEVE, all current state-of-the-art related
approaches. Note that although we compare against those methods, elements of each could be
introduced to SAC-SVG(H) and improve the performance at the cost of increased complexity.
We provide a sweep over horizon lengths for the POPLIN tasks and fix H = 2 in the MBPO
tasks. For every horizon length, we perform a hyper-parameter search only over the target
entropy schedule, which we further describe in app. A. Our SAC baseline uses the same state
normalization and target entropy schedule as our SAC-MVE runs in every environment.

Table 2 shows the results of our method in comparison to POPLIN (Wang and Ba, 2019)
on the locomotion tasks they consider from Wang et al. (2019), POPLIN uses the ground-truth
reward for these tasks and learns a model — we learn both. We outperform POPLIN in most
of the locomotion tasks, though it has a strong exploration strategy and works exceedingly
well in the cheetah environment from PETS (Chua et al., 2018). Notably our SAC baseline
often also outperforms the SAC baseline reported in Wang and Ba (2019). We are able to
find a policy that generates an optimal action with a single rollout sample rather than the
thousands of rollouts POPLIN typically uses and find that setting H = 2 usually improves
upon our SAC baseline (H = 0). Figure 2 shows our results in comparison to MBPO and
STEVE, which evaluate on the MuJoCo tasks in the OpenAI gym (Brockman et al., 2016)
that are mostly the standard v2 tasks with early termination and alive bonuses, and with a
truncated observation space for the humanoid and ant that discards the inertial measurement
units. SAC-SVG(H) consistently matches the best performance and convergence rates across
every task and is able to learn a running gait on the humanoid (fig. 1).

1. Our source code is online at github.com/facebookresearch/svg and builds on the SAC implementation
from Yarats and Kostrikov (2020). Videos of our agents are available at sites.google.com/view/2020-svg.
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SAC-SVG excels in locomotion tasks
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Discussion
1. Is epistemic uncertainty important for exploration in Mujoco environments?

A target action entropy schedule worked well for us
2. Should the value expansion be used for actor and/or critic updates?

We found actor updates to be the best
3. Model becomes inaccurate quickly

Short horizons work best for us (and MBPO)
4. Benchmarks and baselines are challenging to do properly

E.g., from papers tweaking environments or not re-tuning parameters
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Concluding remarks
The stochastic value gradient is competitive with short-horizon model rollouts and action entropy
We attain these results with a simple deterministic LSTM for the world model

Key future directions include:
1. Refinement or semi-amortization
2. Constrained MDPs
3. Model-based extensions of other model-free algorithms
4. More sophisticated world models, e.g., self-supervised
5. Going beyond the single-agent, single-task setting
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