
There are a lot of model-based priors for reinforcement learning:

Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013), Imagination-
Augmented Agents (Weber et al., 2017), Value Iteration Networks (Tamar et al., 2016), 
TreeQN (Farquhar et al., 2017)

These typically involve:
1.Using an RNN: Efficient but not as expressive and general as MPC/iLQR
2.Unrolling an LQR or gradient-based solver: Expressive/general but inefficient

Differentiable MPC for End-to-End Planning and Control
https://locuslab.github.io/mpc.pytorch

https://github.com/locuslab/differentiable-mpc

Introduction and Motivation

Layer z"… MPC Layer …

A lot of data Model Predictions Loss

!":$⋆ = argmin
-.:/

		123(!5)
5

					subject	to		?" = ?@A@5
																										?5B" = C3 !5
																										D ≤ D ≤ D

Cost

Dynamics

Model Predictive Control

Cost
Finds an optimal future trajectory

Optimal actions 
to take next

Initial State

System 
Dynamics

True Model

Approximate 
Model Class

Best Imitation Loss

Best MSE

#Train: 10 #Train: 50 #Train: 100

Figure 4: Learning results on the (simple) pendulum and cartpole environments. We select the best
validation loss observed during the training run and report the best test loss.

5.3 Imitation Learning: Non-Convex Continuous Control

We next demonstrate the ability of our method to do imitation learning in the pendulum and
cartpole benchmark domains. Despite being simple tasks, they are relatively challenging for a
generic poicy to learn quickly in the imitation learning setting. In our experiments we use MPC
experts and learners that produce a nominal action sequence u1:T (x; ✓) where ✓ parameterizes
the model that’s being optimized. The goal of these experiments is to optimize the imitation loss
L = Ex

h
||u1:T (x; ✓)� u1:T (x; ✓̂)||22

i
, again which we can uniquely do using only observed controls

and no observations. We consider the following methods:

Baselines: nn is an LSTM that takes the state x as input and predicts the nominal action sequence. In
this setting we optimize the imitation loss directly. sysid assumes the cost of the controller is known
and approximates the parameters of the dynamics by optimizing the next-state transitions.

Our Methods: mpc.dx assumes the cost of the controller is known and approximates the parameters
of the dynamics by directly optimizing the imitation loss. mpc.cost assumes the dynamics of the
controller is known and approximates the cost by directly optimizing the imitation loss. mpc.cost.dx

approximates both the cost and parameters of the dynamics of the controller by directly optimizing
the imitation loss.

In all settings that involve learning the dynamics (sysid, mpc.dx, and mpc.cost.dx) we use a parame-
terized version of the true dynamics. In the pendulum domain, the parameters are the mass, length,
and gravity; and in the cartpole domain, the parameters are the cart’s mass, pole’s mass, gravity, and
length. For cost learning in mpc.cost and mpc.cost.dx we parameterize the cost of the controller as
the weighted distance to a goal state C(⌧) = ||wg � (⌧ � ⌧g)||22. We have found that simultaneously
learning the weights wg and goal state ⌧g is instable and in our experiments we alternate learning
of wg and ⌧g independently every 10 epochs. We collected a dataset of trajectories from an expert
controller and vary the number of trajectories our models are trained on. A single trial of our experi-
ments takes 1-2 hours on a modern CPU. We optimize the nn setting with Adam [Kingma and Ba,
2014] with a learning rate of 10�4 and all other settings are optimized with RMSprop [Tieleman and
Hinton, 2012] with a learning rate of 10�2 and a decay term of 0.5.

Figure 4 shows that in nearly every case we are able to directly optimize the imitation loss with
respect to the controller and we significantly outperform a general neural network policy trained on
the same information. In many cases we are able to recover the true cost function and dynamics of the
expert. More information about the training and validation losses are in Appendix B. The comparison
between our approach mpc.dx and SysId is notable, as we are able to recover equivalent performance
to SysId with our models using only the control information and without using state information.

Again, while we emphasize that these are simple tasks, there are stark differences between the
approaches. Unlike the generic network-based imitation learning, the MPC policy can exploit its
inherent structure. Specifically, because the network contains a well-defined notion of the dynamics
and cost, it is able to learn with much lower sample complexity that a typical network. But unlike pure
system identification (which would be reasonable only for the case where the physical parameters are
unknown but all other costs are known), the differentiable MPC policy can naturally be adapted to
objectives besides simple state prediction, such as incorporating the additional cost learning portion.

8

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions

Combining model-based and model-free reinforcement learning (RL) 
methods is important to get the best of both methods.
• We propose to combine them with a differentiable control layer that 

can be backpropagated through like any other layer

Given: Expert trajectories from a hand-crafted controller
Goal: Reconstruct missing parts (cost and dynamics) of the 
controller with imitation learning given only nominal trajectories
Loss: !":$⋆ − '!":$ ((

In a domain where the true model class is unrealizable, traditional 
system identification (SysID) may not be the best if you know the 
task that you want to use control for. Instead, directly optimizing 
the task loss is better.

We show this in a pendulum domain where the true model has 
noise terms (damping and wind)

Brandon Amos1  • Ivan Dario Jimenez Rodriguez2 • Jacob Sacks2 • Byron Boots2 • J. Zico Kolter13

1Carnegie Mellon University  • 2Georgia Tech  • 3Bosch Center for AI 

Model Predictive Control

Imitation Learning Experiment: LQR

Should RL policies have a systems dynamics model or not?

Our Contribution: A Differentiable Control Layer

We consider non-convex control optimization problems, expanding 
the scope of OptNet layers

Where can these be used? These differentiable control layers can be 
integrated as part of the policy class in model-free algorithms or 
imitation learning. Unrolled controllers can be replaced with this.

Imitation Learning Experiments: Pendulum and Cartpole

Imitation Learning Experiments: Unrealizable Pendulum

Related Work: Combining model-based and model-free RL

Given: Expert trajectories from a hand-crafted controller
Goal: Reconstruct missing parts (cost and dynamics) of the 
controller with imitation learning given only nominal trajectories
Loss: τ":*⋆ − ,̂":$ (( where ,- = [!- 0-]

A widely-used powerhouse of modern 
control. Typically solved with sequential 
quadratic programming, an iterative
method that forms convex quadratic
approximations to the problem.

LQR, KKT Systems, and Differentiation

Linear-Quadratic Regulator (LQR): A special case of MPC that is convex 
with a quadratic cost and linear dynamics.
Solving LQR with the Riccati recursion efficiently solves the KKT system

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Backwards Pass: Use the OptNet approach from [Amos and Kolter, 
2017] to implicitly differentiate LQR:

where

(Just an LQR solve!)

Differentiating MPC: If a fixed-point is reached, then differentiate 
through the corresponding convex approximation.

Our standalone differentiable MPC solver:
https://locuslab.github.io/mpc.pytorch


