Differentiable MPC for End-to-End Planning and Control

Brandon Amos' e |van Dario Jimenez Rodriguez® ® Jacob Sacks? e Byron Boots?® e J. Zico Kolter'3 https://locuslab.github.10/mpc.pytorch
'Carnegie Mellon University ¢ “Georgia Tech e “Bosch Center for Al https://github.com/locuslab/differentiable-mpc

Introduction and Motivation Related Work: Combining model-based and model-free RL Imitation Learning Experiment: LQR

Should RL policies have a systems dynamics model or not? There are a lot of model-based priors for reinforcement learning: Given: Expert trajectories from a hand-crafted controller

Goal: Reconstruct missing parts (cost and dynamics) of the
Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013), Imagination- gp (y)

Augmented Agents (Weber et al., 2017), Value lteration Networks (Tamar et al., 2016), controller with imitation learning given only nominal trajectories
TreeQN (Farquhar et al., 2017) Loss: ||t].t — T1.7ll5 where T, = [uy x¢]

These typically involve:
1.Using an RNN: Efficient but not as expressive and general as MPC/ILQR
Model-free RL 2.Unrolling an LQR or gradient-based solver: Expressive/general but inefficient

More general, doesn’t make as many assumptions about the world

Rife with poor data efficiency and learning stabllity issues Model Predictive Control e , ,
Imitation Learning Experiments: Pendulum and Cartpole

MOdel—based Rl_ (Or ContrOI) Model Predictive Control

' C , . . . Finds an optimal future trajectory
A useful prior on the world It it lies within your set of assumptions —
Dynamics
inal Szto

Initial State

Imitation Loss
Model Loss

ti = argmin) [Co(zJcos Given: Expert trajectories from a hand-crafted controller

subject to x; = Xinit Goal: Reconstruct missing parts (cost and dynamics) of the

Xe+1 = |fo(T¢)|Dynamics

ey T controller witr imita;cion learning given only nominal trajectories
U T R
Loss: |luy.r — tq.7ll3

» : ‘ . Y Optimal actions
to take next

Combining model-based and model-free reinforcement learning (RL)
methods Is important to get the best of both methods. |
« We propose to combine them with a differentiable control layer that A widely-used powerhouse of modern

Pendulum Cartpole
' : ' . QP lterate i 101 - Baselines | Ours Baselines | Ours
can be backpropagated through like any other layer control. Typically solved with sequential i = argmin Y Ch(ro - 1
quadratic programming, an iterative L Y = i S .
. Xt+1 = fel(Tt) .S .
method that forms convex quadratic uSusT % 109
£

Our Contribution: A Differentiable Control Layer approximations to the problem.

Differentiating MPC: If a fixed-point is reached, then differentiate
=) =) through the corresponding convex approximation.

Our standalone differentiable MPC solver: P Y T

r________________J____________________________j https://locuslab.github.io/mpé.pytorch
. ‘ Layer z; ‘ MPC Layer ‘

Imitation Learning Experiments: Unrealizable Pendulum

R C H In a domain where the true model class is unrealizable, traditional
system identification (SyslD) may not be the best if you know the
LQR, KKT Systems, and Differentiation task that you want to use control for. Instead, directly optimizing

the task loss Is better.

.) . _ . - .

We consider non-convex control optimization problems, expanding Linear-Quadratic Regulator (LQR): A special case of MPC that is convex
with a quadratic cost and linear dynamics.

the scope of OptNet layers

Solving LQR with the Riccati recursion efficiently solves the KKT system /e Show this in a pendulum domain where the true model has

5 \ noise terms (damping and wind)
' . T At Tt+1)\t—l—l
Where can these be used? These differentiable control layers canbe .+ T I
integrated as part of the policy class in model-free algorithms or ii FI et A my et Imitation Loss S8 Approximate
imitation learning. Unrolled controllers can be replaced with this. K G BN e
e R s L : True Model Y *Best MSE

Backwards Pass: Use the OptNet approach from [Amos and Kolter,

SysiD Loss Imitation Loss
2017] to implicitly differentiate LQR: (‘J“St an LQR solvey n — 53 ’ S
or 1 o1 o1 : 0.00% SRR i -
(df @17 + 17 @d~) — =d., = dj, d* \VAY S | ' :
80 2 dcy OZinit K ;7('75 — T ~ - 0.1
ﬁ = d>\ 09 Tt +)‘t—I-l 0% dx % = d;(\t Where dAt O 0 OO0 ' - - ' an | ' - | 5

41 Tt . L
OF; Of: 0 50 100 150 200 250 0 50 100 150 200
Epach Epoch

B Vanilla Sysld Bascline W (Ours) Directly optimizing the Imitation Loss

