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Should RL policies have a system
dynamics model or not?
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Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions
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Combining model-based and model-free RL

Recently there has been a lot of interest in model-based priors for model-free
reinforcement learning:

Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013),
Imagination-Augmented Agents (Weber et al., 2017), Value Iteration Networks
(Tamar et al., 2016), TreeQN (Farquhar et al., 2017)

These typically involve:
1. Using an RNN: Efficient but not as expressive and general as MPC/ILQR
2. Unrolling an LQR or gradient-based solver: Expressive/general but inefficient

Our approach: Differentiable Model-Predictive Control
» Explicitly solves a control problem
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Our Approach: Model Predictive Control

Traditionally viewed as a pure planning problem given known
(potentially non-convex) cost and dynamics:
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where T = {xt, ut}
Execute u; in the environment, observe the next observation, and repeat.
Cost and dynamics explicitly represented and learned.
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Model Predictive Control with SQP

The standard way of solving MPC is to use sequential quadratic
programming (SQP), using LQR in most cases

Form approximations to the cost and dynamics around the current iterate
Repeat until a fixed point is reached and differentiate through it
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LAR, KKT Systems, and Differentiation

Solving LQR with dynamic Riccati recursion efficiently solves the KKT system
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Backwards Pass: Use the OptNet approach from [Amos and Kolter, 2017] to
implicitly differentiate the LQR KKT conditions:
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Just another LQR problem!
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A Differentiable MPC Module

We can differentiate through (non-convex) MPC with a single (convex) LQR
solve by differentiating the SQP fixed point
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What can we do with this now?

Replace neural network policies in model-free algorithms with MPC policies, and
also replace the unrolled controllers in other settings (hindsight plan, universal

planning networks)

The cost can also be learned! No longer have to hard-code in a known value.
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A PyTorch MPC Solver

https://locuslab.github.io/mpc.pytorch

Control is important!

mpc.pytorch

Model Predictive Control
A fast and differentiable
model predictive control
(MPC) solver for PyTorch.
Crafted by Brandon
Amos, lvan Jimenez, Jacob .
Sacks, Byron Boots, and ). \
Zico Kolter. For more

Finds an optimal future trajectory

context and details, see

our ICML 2017 paper on Optimal control is a widespread field that involve finding an optimal sequence of future actions to
OptNet and our take in a system or environment. This is the most useful in domains when you can analytically
(forthcoming) NIPS 2018 model your system and can easily define a cost to optimize over your system. This project focuses
paper on differentiable on solving model predictive control (MPC) with the box-DDP heuristic. MPC is a powerhouse in
MPC. many real-world domains ranging from short-time horizon robot control tasks to long-time horizon

control of chemical processing plants. More recently, the reinforcement learning community, strife

View On GitHub with poor sample-complexity and instability issues in model-free learning, has been actively
searching for useful model-based applications and priors.
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Imitation learning with a linear model

Linear dynamics: f (x;, u;) = Ax; + Bu;
Parameters: 6 = {4, B}

Trajectory: 74 (xipjt) Obtained by MPC

Given known 6 and sample trajectories, learn 8
Trajectory (Training) Loss: MSE (74 (xinit) 73 (Xinit))
Model Loss: MSE(8, 6)
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Not guaranteed to converge, but a good sanity check that it does in small cases.
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Brandon Amos

Simple Pendulum Control
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Imitation learning with the pendulum/cartpole

Again optimizes the imitation loss with respect to the controller’s parameters

Using only action trajectories we can recover the true parameters
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Optimizing the task loss is often better
than SyslID in the unrealizable case

True System: Pendulum environment with noise (damping and a wind force)
Approximate Model: Pendulum without the noise terms

SysID Loss Imitation Loss
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Explicit controllers can be learned just as any other layer and integrated
with larger black-pox policy classes

Directly optimizing the task loss of controllers is important to do in addition
to standard system identification once a task is known

https://locuslab.github.10/mpc.pytorch
: ¥ https://github.com/locuslab/differentiable-mpc
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