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Should RL policies have a system 
dynamics model or not?

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions
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Combining model-based and model-free RL

Recently there has been a lot of interest in model-based priors for model-free 
reinforcement learning:

Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013), 
Imagination-Augmented Agents (Weber et al., 2017), Value Iteration Networks 
(Tamar et al., 2016), TreeQN (Farquhar et al., 2017)

These typically involve:
1. Using an RNN: Efficient but not as expressive and general as MPC/iLQR
2. Unrolling an LQR or gradient-based solver: Expressive/general but inefficient

Our approach: Differentiable Model-Predictive Control
• Explicitly solves a control problem
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Our Approach: Model Predictive Control
Traditionally		viewed	as	a	pure	planning	problem	given	known	

(potentially	non-convex)	cost and	dynamics:
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Cost

Dynamics

where	!1 = {>1, C1}

Execute	C" in	the	environment,	observe	the	next	observation,	and	repeat.

Cost	and	dynamics	explicitly	represented	and	learned.



Model Predictive Control with SQP
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• The	standard	way	of	solving	MPC	is	to	use	sequential	quadratic	
programming	(SQP),	using	LQR	in	most	cases

• Form	approximations	to	the	cost	and	dynamics	around	the	current	iterate
• Repeat	until	a	fixed	point	is	reached	and	differentiate	through	it



LQR, KKT Systems, and Differentiation
Solving LQR with dynamic Riccati recursion efficiently solves the KKT system
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Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
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Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system
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Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are
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where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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Backwards Pass: Use the OptNet approach from [Amos and Kolter, 2017] to 
implicitly differentiate the LQR KKT conditions:

where

Just another LQR problem!



A Differentiable MPC Module
We can differentiate through (non-convex) MPC with a single (convex) LQR 
solve by differentiating the SQP fixed point
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What can we do with this now?
Replace neural network policies in model-free algorithms with MPC policies, and 
also replace the unrolled controllers in other settings (hindsight plan, universal 
planning networks)

The cost can also be learned! No longer have to hard-code in a known value.

Layer z"… MPC Layer …

A lot of data Model Predictions Loss



A PyTorch MPC Solver
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https://locuslab.github.io/mpc.pytorch



Imitation learning with a linear model
Linear dynamics: ! "#, %# = '"# + )%#
Parameters: * = {', )}
Trajectory: -. "init obtained by MPC 

Given known * and sample trajectories, learn 2*
Trajectory (Training) Loss: MSE(-. "init , -7. "init )
Model Loss: MSE(*, 2*)

Not guaranteed to converge, but a good sanity check that it does in small cases.
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Simple Pendulum Control
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Imitation learning with the pendulum/cartpole

Again optimizes the imitation loss with respect to the controller’s parameters

Using only action trajectories we can recover the true parameters
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Optimizing the task loss is often better 
than SysID in the unrealizable case

Brandon Amos Differentiable MPC for End-to-End Planning and Control 13

True System: Pendulum environment with noise (damping and a wind force)
Approximate Model: Pendulum without the noise terms

True Model

Approximate 
Model Class

Best Imitation Loss

Best MSE



B. Amos, I. Rodriguez, J. Sacks, B. Boots, J. Z. Kolter

https://locuslab.github.io/mpc.pytorch
https://github.com/locuslab/differentiable-mpc

Explicit controllers can be learned just as any other layer and integrated 
with larger black-pox policy classes

Directly optimizing the task loss of controllers is important to do in addition 
to standard system identification once a task is known

Differentiable MPC for End-to-End 
Planning and Control

NeurIPS 2018
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