
OptNet: End-to-End Differentiable
Constrained Optimization

Brandon Amos
Carnegie Mellon University

Joint work with J. Zico Kolter, Priya Donti, Jacob Sacks,
Ivan Jimenez Rodriguez, and Byron Boots

Where do today’s ML systems break down?

Current Primitive Operations: Linear maps, convolutions, activation functions,
random sampling, simple projections (e.g. onto the simplex or Birkhoff polytope)

A lot of data Model Predictions

• Consider optimization as another potential layer, to be composed with others

• Why? Optimization is an extremely powerful
paradigm for decision-making.
• Applications in finance (Markowitz portfolio optimization),

machine learning (support vector machines),
control (linear-quadratic model predictive control),
geometry (projections onto polyhedra)

OptNet: Optimization as a new primitive operation

x!

Note: we already use parameter optimization in the learning procedures,
but we should also consider it as an operation for inference and control

Loss

Brandon Amos OptNet: End-to-End Differentiable Optimization 2

Why is optimization a useful primitive
operation in learning systems?

We have incomplete domain knowledge about what we want to model
• Fill in parts of the optimization problem that we know
• Use data to learn the parts that we don’t

Brandon Amos OptNet: End-to-End Differentiable Optimization 3

(Learned) Abstract
Representation (Learned) Solver

A lot of data Model Predictions Loss

OptNet Application: Approximating Polytopes

4

Polytope Predictions During Training

True Polytope (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

Brandon Amos Convex Optimization within Deep Learning

This Talk
• The OptNet Layer

• Starting Simple: Learning Projections, Sudoku, and Denoising

• End-to-End Task-Based Learning for Stochastic Optimization

• End-to-End Model Predictive Control

Brandon Amos OptNet: End-to-End Differentiable Optimization 5

𝑧!"# = argmin
$

1
2
𝑧%𝑄 𝑧! 𝑧 + 𝑞 𝑧! %𝑧

subject to 𝐴 𝑧! 𝑧 = 𝑏 𝑧!
𝐺 𝑧! 𝑧 ≤ ℎ 𝑧!

Learnable parameters: 𝑄, 𝑞, 𝐴, 𝑏, 𝐺, ℎ

Layer 𝑧!… OptNet
Layer

…

The OptNet Layer
A lot of data Model Predictions

The matrix 𝑄 𝑧! depends on
the previous layer 𝑧!

Loss

Brandon Amos OptNet: End-to-End Differentiable Optimization 6

Differentiating a convex argmin
Consider a convex optimization problem with inputs 𝑝 and parameters 𝜃:

𝑥⋆ = argmin
'

𝑓(𝑥, 𝑝, 𝜃)

subject to 𝑔(𝑥, 𝑝, 𝜃) ≤ 0
ℎ 𝑥, 𝑝, 𝜃 = 0

From convex optimization theory, the Karush-Kuhn-Tucker conditions
provide necessary and sufficient equations for optimality.

To obtain 𝜕𝑥⋆/𝜕𝑝 and 𝜕𝑥⋆/𝜕𝜃, implicitly differentiate the KKT conditions.

Brandon Amos Convex Optimization within Deep Learning 7

Implicitly differentiating the KKT conditions
Solve linear systems of the form:

If done correctly, just requires a single solve to compute all gradients
• More details are in our OptNet paper (ICML 2017)

Brandon Amos OptNet: End-to-End Differentiable Optimization 8

𝑄 𝐺" 𝐴"
𝐷 𝜆 𝐺 𝐷(𝐺𝑥 − ℎ) 0
𝐴 0 0

𝜕𝑧
𝜕𝜆
𝜕𝜈

=
−𝜕𝑄𝑧 − 𝜕𝑝 − 𝜕𝐺"𝜆 − 𝜕𝐴"𝜈

−𝜆 ∘ (𝜕𝐺"𝑧 − 𝜕ℎ)
−𝜕𝐴𝑧 + 𝜕𝑏

Generalized Jacobian of
KKT conditions

Desired
gradients

Gradients of optimization
problem parameters

Efficient implementation
Optimization in every single pass of the network, even using highly
optimized (but necessarily still general purpose) solvers, is slow

Implemented our own primal-dual interior point algorithm for QPs,
specialized for minibatch processing of multiple same-sized problems
using batch GPU factorization, plus some additional tricks

Very nice property: matrix solution needed for backprop is exactly the
same as that used in interior point final inner solve, meaning we get
backprop through the solver effectively “for free”

Open source implementation (for PyTorch) available at:
http://locuslab.github.io/qpth

9

http://locuslab.github.io/qpth

This Talk
• The OptNet Layer

• Starting Simple: Learning Projections, Sudoku, and Denoising

• End-to-End Task-Based Learning for Stochastic Optimization

• End-to-End Model Predictive Control

Brandon Amos OptNet: End-to-End Differentiable Optimization 10

Projection as a machine learning problem

What if we are given example input/output pairs 𝑝!, 𝑥!⋆ and want to
recover 𝐺 and ℎ?

Brandon Amos Convex Optimization within Deep Learning 11

𝑥#

𝑥$ 𝑝

𝐺𝑥 ≤ ℎ

𝑥⋆

𝑥⋆ = argmin
'

dist(𝑥, 𝑝)

subject to 𝐺𝑥 ≤ ℎ

True Problem

One Approach: Projection with a convex hull

What if we are given example input/output pairs 𝑝!, 𝑥!⋆ and want to
recover 𝐺 and ℎ?

The convex hull gives this, but is difficult to approximate in high dimensions
and under noise.

Brandon Amos Convex Optimization within Deep Learning 12

𝑥#

𝑥$

𝐺𝑥 ≤ ℎ

Points: 𝑥!⋆

𝑥⋆ = argmin
'

dist(𝑥, 𝑝)

subject to 𝐺𝑥 ≤ ℎ

True Problem

The OptNet approach to learning projections
Model:

𝑥⋆ = argmin
'

dist(𝑥, 𝑝)
subject to 𝐺𝑥 ≤ ℎ

Data: Example input/output pairs 𝑝!, 𝑥!⋆

Training: The output is just a function of 𝑝, 𝐺, and ℎ. Randomly initialize a
new polytope G𝐺 and Gℎ, define a loss function ℓ, and take gradient steps
with 𝜕ℓ/𝜕 G𝐺 and 𝜕ℓ/𝜕Gℎ.

Brandon Amos Convex Optimization within Deep Learning 13

OptNet Application: Approximating Polytopes

14

Polytope Predictions During Training

True Polytope (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

Brandon Amos Convex Optimization within Deep Learning

Application: Sudoku

Brandon Amos Convex Optimization within Deep Learning 15

Application: Sudoku
𝑥⋆ = argmin

'
dist(𝑥, 𝑝)

subject to 𝐴𝑥 = 𝑏

The OptNet layer exactly learns the mini-Sudoku constraints from data!
Baseline: A deep convolutional feed-forward network

%
 In

co
rre

ct
ly

So
lve

d
Bo

ar
ds

Application: 1D Signal Denoising
Task: Learn a model from data that maps from a noisy signal to a denoised signal.

Total Variation Denoising Approach: Solve the following optimization problem
where 𝐷 is the differencing operator.

𝑧⋆ = argmin
$

1
2 𝑦 − 𝑧 (

(
+ 𝜆 𝐷𝑧 #

OptNet Application: Randomly initialize the differencing operator 𝐷 and learn it
from data with gradients 𝜕𝑧⋆/𝜕𝐷

17ICML 2017 OptNet: Amos and Kolter

Randomly Initialized 𝐷 Learned 𝐷True 𝐷

This Talk
• The OptNet Layer

• Starting Simple: Learning Projections, Sudoku, and Denoising

• End-to-End Task-Based Learning for Stochastic Optimization

• End-to-End Model Predictive Control

Brandon Amos OptNet: End-to-End Differentiable Optimization 18

The future of machine learning

19

Data
Machine
learning

algorithm
Decision
making Cost, e.g. $$

Example: electricity generation

20

Present

Past demand

Future demand
(w/ uncertainty)

Generation
schedule

≡ 𝑥

≡ 𝑦

≡ 𝑧

Stochastic programming
Given some distribution over 𝑦, solve the optimization problem to find
generation schedule 𝑧

minimize
$

𝐄[𝑓 𝑦, 𝑧]
subject to 𝐄 𝑔 𝑦, 𝑧 ≤ 0

ℎ 𝑧 = 0

where expectations are with respect to 𝑦

Crucial point: solving stochastic program requires a model of random
variable y (need to draw multiple samples)

21

I.e., “schedule
generation to
minimize expected
cost under
distribution”

The whole (complicated) process
1. Pick form of model 𝑝 𝑦 𝑥; 𝜃 , and learn via maximum likelihood

2. Given some new example (𝑥), 𝑦)):

A. Receive features 𝑥′, form distribution 𝑝(𝑦|𝑥); 𝜃)

B. Solve stochastic optimization problem
minimize

$
𝐄[𝑓 𝑦, 𝑧] s. t. 𝐄[𝑔 𝑦, 𝑧] ≤ 0 ℎ 𝑦, 𝑧 = 0

call the resulting solution 𝑧⋆ 𝑥); 𝜃

C. Suffer cost 𝑓 𝑦), 𝑧⋆ 𝑥); 𝜃

22

E.g., previous and future
(actual) demand

Something is wrong here…
We are learning the model based upon log likelihood log 𝑝 𝑦 ! 𝑥 ! ; 𝜃 ,
but evaluating it using a task-based cost function 𝑓 𝑦), 𝑧⋆ 𝑥); 𝜃 …

Unless the true underlying distribution is in the model class (never the
case), these are two different and competing objectives

Our proposed alternative: adjust the model parameters to optimize the
actual performance of the closed-loop system

23

Task-based end-to-end model learning
Basic idea: treat 𝑧⋆ 𝑥; 𝜃 as a “black box policy”, whose parameters
happen to be the parameters of a prediction model

Given samples 𝑥 ! , 𝑦 ! , directly optimize model parameters to improve
the performance of the policy

minimize
*

V
!+#

,

𝑓 𝑦 ! , 𝑧⋆ 𝑥 ! ; 𝜃

Requires computing the Jacobian
𝜕
𝜕𝜃 𝑓 𝑦 ! , 𝑧⋆ 𝑥 ! ; 𝜃 =

𝜕𝑓 𝑦 ! , 𝑧⋆

𝜕𝑧⋆
𝜕𝑧⋆

𝜕𝜃

24

The Jacobian of the solution to
the optimization problem

Task-based learning application:
electricity generation

25

Present

Past demand

Future demand
(w/ uncertainty)

Generation
schedule

≡ 𝑥

≡ 𝑦

≡ 𝑧

Model Loss: Prediction error of 𝑦 into the future

Task Loss: Generation cost (some function of 𝑧)

Brandon Amos End-to-End Optimization for RL

Results: electricity generation

Brandon Amos End-to-End Optimization for RL 26

M
od

el
Lo

ss

The task net incurs nearly the same model loss as the baseline, but learns to
make errors in places that aren’t as harmful to the task loss.

Model Loss: Prediction error of 𝑦 into the future
Task Loss: Generation cost (some function of 𝑧)

This Talk
• The OptNet Layer

• Starting Simple: Learning Projections, Sudoku, and Denoising

• End-to-End Task-Based Learning for Stochastic Optimization

• End-to-End Model Predictive Control

Brandon Amos OptNet: End-to-End Differentiable Optimization 27

In model-based RL

28

Controller Environment
Reward

Brandon Amos End-to-End Optimization for RL

Trajectories

Related work on combining model-
based and model-free RL

Recently there has been a lot of interest in model-based priors for model-
free reinforcement learning:

• Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013),
Imagination-Augmented Agents (Weber et al., 2017), Value Iteration Networks
(Tamar et al., 2016), TreeQN (Farquhar et al., 2017)

These typically involve:
1. Using an RNN: Efficient but not as expressive and general as control
2. Unrolling an LQR solver: Expressive/general but inefficient

Brandon Amos End-to-End Optimization for RL 29

Our Approach: Model Predictive Control
Traditionally		viewed	as	a	pure	planning	problem	given	known	
(potentially	non-convex)	cost and	dynamics:

𝜏#:%⋆ = argmin
.!:#

V
/

𝐶*(𝜏/)

subject to 𝑥# = 𝑥!0!/
𝑥/"# = 𝑓* 𝜏/
𝑢 ≤ 𝑢 ≤ 𝑢

where	𝜏/ = {𝑥/, 𝑢/}

Execute	𝑢# in	the	environment,	observe	the	next	observation,	and	repeat.

Cost	and	dynamics	explicitly	represented	and	learned.

Brandon Amos End-to-End Optimization for RL 30

Cost

Dynamics

Model Predictive Control with SQP

Brandon Amos End-to-End Optimization for RL 31

• The	standard	way	of	solving	MPC	is	to	use	sequential	quadratic	
programming	(SQP),	using	LQR	(linear	quadratic	regulator)	in	most	cases

• Form	approximations	to	the	cost	and	dynamics	around	the	current	iterate
• Repeat	until	a	fixed	point	is	reached	and	differentiate	through	it

𝜏#:%! = argmin
.!:#

V
/

r𝐶*
! (𝜏/)

subject to 𝑥# = 𝑥!0!/
𝑥/"# = r𝑓*! 𝜏/
𝑢 ≤ 𝑢 ≤ 𝑢

QP iterate 𝑖

......

A Differentiable MPC Module
Solve MPC with SQP, differentiate through the fixed point with OptNet

Brandon Amos OptNet: End-to-End Differentiable Optimization 32

What can we do with this now?
Replace neural network policies in model-free algorithms with MPC policies, and
also replace the unrolled controllers in other settings (hindsight plan, universal
planning networks)

The cost can also be learned! No longer have to hard-code in a known value.

Imitation learning with a linear model

Brandon Amos End-to-End Optimization for RL 33

Some closing thoughts
(Exact) optimization is a powerful primitive to use within larger,
interconnected systems

Such solvers can be propagated through and learned, just like any layer

Many applications of the technique

The general possibility of training complex end-to-end decision making
systems is just getting started…

Brandon Amos OptNet: End-to-End Differentiable Optimization 34

OptNet: End-to-End Differentiable Optimization
Brandon Amos | Carnegie Mellon University

OptNet: Differentiable Optimization as a Layer in Neural Networks
B. Amos and J. Z. Kolter
ICML 2017

Task-based End-to-end Model Learning
P. Donti, B. Amos, and J. Z. Kolter
NIPS 2017

https://locuslab.github.io/qpth/
https://github.com/locuslab/optnet
https://github.com/locuslab/e2e-model-learning

Applications: Projections, Sudoku, Denoising,
Task-based Learning, Model Predictive Control

