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Where do today’s ML systems break down?

Current Primitive Operations: Linear maps, convolutions, activation functions, 
random sampling, simple projections (e.g. onto the simplex or Birkhoff polytope)

A lot of data Model Predictions

• Consider optimization as another potential layer, to be composed with others

• Why? Optimization is an extremely powerful
paradigm for decision-making.
• Applications in finance (Markowitz portfolio optimization),

machine learning (support vector machines),
control (linear-quadratic model predictive control),
geometry (projections onto polyhedra)

OptNet: Optimization as a new primitive operation

x!

Note: we already use parameter optimization in the learning procedures, 
but we should also consider it as an operation for inference and control

Loss
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Why is optimization a useful primitive 
operation in learning systems?

We have incomplete domain knowledge about what we want to model
• Fill in parts of the optimization problem that we know
• Use data to learn the parts that we don’t
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(Learned) Abstract 
Representation (Learned) Solver

A lot of data Model Predictions Loss



OptNet Application: Approximating Polytopes

4

Polytope Predictions During Training

True Polytope (Unknown to the model)

Example 1 Example 2

Example 3 Example 4
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This Talk
• The OptNet Layer

• Starting Simple: Learning Projections, Sudoku, and Denoising

• End-to-End Task-Based Learning for Stochastic Optimization

• End-to-End Model Predictive Control
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𝑧!"# = argmin
$

1
2
𝑧%𝑄 𝑧! 𝑧 + 𝑞 𝑧! %𝑧

subject to 𝐴 𝑧! 𝑧 = 𝑏 𝑧!
𝐺 𝑧! 𝑧 ≤ ℎ 𝑧!

Learnable parameters: 𝑄, 𝑞, 𝐴, 𝑏, 𝐺, ℎ

Layer 𝑧!… OptNet 
Layer

…

The OptNet Layer
A lot of data Model Predictions

The matrix 𝑄 𝑧! depends on 
the previous layer 𝑧!

Loss
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Differentiating a convex argmin
Consider a convex optimization problem with inputs 𝑝 and parameters 𝜃:

𝑥⋆ = argmin
'

𝑓(𝑥, 𝑝, 𝜃)

subject to 𝑔(𝑥, 𝑝, 𝜃) ≤ 0
ℎ 𝑥, 𝑝, 𝜃 = 0

From convex optimization theory, the Karush-Kuhn-Tucker conditions 
provide necessary and sufficient equations for optimality.

To obtain 𝜕𝑥⋆/𝜕𝑝 and 𝜕𝑥⋆/𝜕𝜃, implicitly differentiate the KKT conditions.
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Implicitly differentiating the KKT conditions
Solve linear systems of the form:

If done correctly, just requires a single solve to compute all gradients
• More details are in our OptNet paper (ICML 2017)
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𝑄 𝐺" 𝐴"
𝐷 𝜆 𝐺 𝐷(𝐺𝑥 − ℎ) 0
𝐴 0 0

𝜕𝑧
𝜕𝜆
𝜕𝜈

=
−𝜕𝑄𝑧 − 𝜕𝑝 − 𝜕𝐺"𝜆 − 𝜕𝐴"𝜈

−𝜆 ∘ (𝜕𝐺"𝑧 − 𝜕ℎ)
−𝜕𝐴𝑧 + 𝜕𝑏

Generalized Jacobian of 
KKT conditions

Desired 
gradients

Gradients of optimization 
problem parameters



Efficient implementation
Optimization in every single pass of the network, even using highly 
optimized (but necessarily still general purpose) solvers, is slow

Implemented our own primal-dual interior point algorithm for QPs, 
specialized for minibatch processing of multiple same-sized problems 
using batch GPU factorization, plus some additional tricks

Very nice property: matrix solution needed for backprop is exactly the 
same as that used in interior point final inner solve, meaning we get 
backprop through the solver effectively “for free”

Open source implementation (for PyTorch) available at: 
http://locuslab.github.io/qpth
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http://locuslab.github.io/qpth


This Talk
• The OptNet Layer

• Starting Simple: Learning Projections, Sudoku, and Denoising

• End-to-End Task-Based Learning for Stochastic Optimization

• End-to-End Model Predictive Control
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Projection as a machine learning problem

What if we are given example input/output pairs  𝑝!, 𝑥!⋆ and want to 
recover 𝐺 and ℎ?
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𝑥#

𝑥$ 𝑝

𝐺𝑥 ≤ ℎ

𝑥⋆

𝑥⋆ = argmin
'

dist(𝑥, 𝑝)

subject to 𝐺𝑥 ≤ ℎ

True Problem



One Approach: Projection with a convex hull

What if we are given example input/output pairs  𝑝!, 𝑥!⋆ and want to 
recover 𝐺 and ℎ?

The convex hull gives this, but is difficult to approximate in high dimensions 
and under noise.
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𝑥#

𝑥$

𝐺𝑥 ≤ ℎ

Points: 𝑥!⋆

𝑥⋆ = argmin
'

dist(𝑥, 𝑝)

subject to 𝐺𝑥 ≤ ℎ

True Problem



The OptNet approach to learning projections
Model: 

𝑥⋆ = argmin
'

dist(𝑥, 𝑝)
subject to 𝐺𝑥 ≤ ℎ

Data: Example input/output pairs 𝑝!, 𝑥!⋆

Training: The output is just a function of 𝑝, 𝐺, and ℎ. Randomly initialize a 
new polytope G𝐺 and Gℎ, define a loss function ℓ, and take gradient steps 
with 𝜕ℓ/𝜕 G𝐺 and 𝜕ℓ/𝜕Gℎ.

Brandon Amos Convex Optimization within Deep Learning 13



OptNet Application: Approximating Polytopes
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Polytope Predictions During Training

True Polytope (Unknown to the model)

Example 1 Example 2

Example 3 Example 4
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Application: Sudoku
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Application: Sudoku
𝑥⋆ = argmin

'
dist(𝑥, 𝑝)

subject to 𝐴𝑥 = 𝑏

The OptNet layer exactly learns the mini-Sudoku constraints from data!
Baseline: A deep convolutional feed-forward network

%
 In

co
rre

ct
ly 

So
lve

d 
Bo

ar
ds



Application: 1D Signal Denoising
Task: Learn a model from data that maps from a noisy signal to a denoised signal.

Total Variation Denoising Approach: Solve the following optimization problem 
where 𝐷 is the differencing operator.

𝑧⋆ = argmin
$

1
2 𝑦 − 𝑧 (

(
+ 𝜆 𝐷𝑧 #

OptNet Application: Randomly initialize the differencing operator 𝐷 and learn it 
from data with gradients 𝜕𝑧⋆/𝜕𝐷

17ICML 2017 OptNet: Amos and Kolter
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The future of machine learning
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Data
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learning 

algorithm
Decision 
making Cost, e.g. $$



Example: electricity generation
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Present

Past demand

Future demand 
(w/ uncertainty)

Generation 
schedule

≡ 𝑥

≡ 𝑦

≡ 𝑧



Stochastic programming
Given some distribution over 𝑦, solve the optimization problem to find 
generation schedule 𝑧

minimize
$

𝐄[𝑓 𝑦, 𝑧 ]
subject to 𝐄 𝑔 𝑦, 𝑧 ≤ 0

ℎ 𝑧 = 0

where expectations are with respect to 𝑦

Crucial point: solving stochastic program requires a model of random 
variable y (need to draw multiple samples)
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I.e., “schedule 
generation to 
minimize expected 
cost under 
distribution”



The whole (complicated) process
1. Pick form of model 𝑝 𝑦 𝑥; 𝜃 , and learn via maximum likelihood

2. Given some new example (𝑥), 𝑦)):

A. Receive features 𝑥′, form distribution 𝑝(𝑦|𝑥); 𝜃)

B. Solve stochastic optimization problem
minimize

$
𝐄[𝑓 𝑦, 𝑧 ] s. t. 𝐄[𝑔 𝑦, 𝑧 ] ≤ 0 ℎ 𝑦, 𝑧 = 0

call the resulting solution 𝑧⋆ 𝑥); 𝜃

C. Suffer cost 𝑓 𝑦), 𝑧⋆ 𝑥); 𝜃
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E.g., previous and future 
(actual) demand



Something is wrong here…
We are learning the model based upon log likelihood log 𝑝 𝑦 ! 𝑥 ! ; 𝜃 , 
but evaluating it using a task-based cost function 𝑓 𝑦), 𝑧⋆ 𝑥); 𝜃 …

Unless the true underlying distribution is in the model class (never the 
case), these are two different and competing objectives

Our proposed alternative: adjust the model parameters to optimize the 
actual performance of the closed-loop system
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Task-based end-to-end model learning
Basic idea: treat 𝑧⋆ 𝑥; 𝜃 as a “black box policy”, whose parameters 
happen to be the parameters of a prediction model

Given samples 𝑥 ! , 𝑦 ! , directly optimize model parameters to improve 
the performance of the policy

minimize
*

V
!+#

,

𝑓 𝑦 ! , 𝑧⋆ 𝑥 ! ; 𝜃

Requires computing the Jacobian
𝜕
𝜕𝜃 𝑓 𝑦 ! , 𝑧⋆ 𝑥 ! ; 𝜃 =

𝜕𝑓 𝑦 ! , 𝑧⋆

𝜕𝑧⋆
𝜕𝑧⋆

𝜕𝜃
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The Jacobian of the solution to 
the optimization problem



Task-based learning application: 
electricity generation
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Present

Past demand

Future demand 
(w/ uncertainty)

Generation 
schedule

≡ 𝑥

≡ 𝑦

≡ 𝑧

Model Loss: Prediction error of 𝑦 into the future

Task Loss: Generation cost (some function of 𝑧)
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Results: electricity generation
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The task net incurs nearly the same model loss as the baseline, but learns to 
make errors in places that aren’t as harmful to the task loss.

Model Loss: Prediction error of 𝑦 into the future
Task Loss: Generation cost (some function of 𝑧)
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In model-based RL
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Controller Environment
Reward
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Related work on combining model-
based and model-free RL

Recently there has been a lot of interest in model-based priors for model-
free reinforcement learning:

• Among others: Dyna-Q (Sutton, 1990), GPS (Levine and Koltun, 2013), 
Imagination-Augmented Agents (Weber et al., 2017), Value Iteration Networks 
(Tamar et al., 2016), TreeQN (Farquhar et al., 2017)

These typically involve:
1. Using an RNN: Efficient but not as expressive and general as control
2. Unrolling an LQR solver: Expressive/general but inefficient
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Our Approach: Model Predictive Control
Traditionally		viewed	as	a	pure	planning	problem	given	known	
(potentially	non-convex)	cost and	dynamics:

𝜏#:%⋆ = argmin
.!:#

V
/

𝐶*(𝜏/)

subject to 𝑥# = 𝑥!0!/
𝑥/"# = 𝑓* 𝜏/
𝑢 ≤ 𝑢 ≤ 𝑢

where	𝜏/ = {𝑥/, 𝑢/}

Execute	𝑢# in	the	environment,	observe	the	next	observation,	and	repeat.

Cost	and	dynamics	explicitly	represented	and	learned.
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Model Predictive Control with SQP
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• The	standard	way	of	solving	MPC	is	to	use	sequential	quadratic	
programming	(SQP),	using	LQR	(linear	quadratic	regulator)	in	most	cases

• Form	approximations	to	the	cost	and	dynamics	around	the	current	iterate
• Repeat	until	a	fixed	point	is	reached	and	differentiate	through	it

𝜏#:%! = argmin
.!:#

V
/

r𝐶*
! (𝜏/)

subject to 𝑥# = 𝑥!0!/
𝑥/"# = r𝑓*! 𝜏/
𝑢 ≤ 𝑢 ≤ 𝑢

QP iterate 𝑖

......



A Differentiable MPC Module
Solve MPC with SQP, differentiate through the fixed point with OptNet
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What can we do with this now?
Replace neural network policies in model-free algorithms with MPC policies, and 
also replace the unrolled controllers in other settings (hindsight plan, universal 
planning networks)

The cost can also be learned! No longer have to hard-code in a known value.



Imitation learning with a linear model

Brandon Amos End-to-End Optimization for RL 33



Some closing thoughts
(Exact) optimization is a powerful primitive to use within larger, 
interconnected systems

Such solvers can be propagated through and learned, just like any layer

Many applications of the technique

The general possibility of training complex end-to-end decision making 
systems is just getting started…
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