Tutorial on amortized optimization

Github.com/facebookresearch/amortized-optimization-tutorial

Brandon Amos Meta AI NYC, Fundamental AI Research (FAIR)

Collaborators: Noam Brown, Caroline Chen, Samuel Cohen, Arnaud Fickinger, Hengyuan Hu, Yann LeCun, Zeming Lin, Jason Liu, Giulia Luise, Joshua Meier, Ievgen Redko, Tom Sercu, Alexander Rives, Samuel Stanton, Shoba Venkataraman, Stuart Russel, Robert Verkuil, Andrew Gordon Wilson, Denis Yarats

Optimization is a powerful modeling tool

Continuous optimization expresses many non-trivial operations

Control, reinforcement learning, robotics, geometry (projections), variational inference, finance (portfolio optimization), sparse coding, meta-learning, deep equilibrium networks, optimal transport, game and market equilibrium

Repeatedly solving optimization problems

Optimization problems often **do not live in isolation** and are often **repeatedly solved** in deployment

In control, x is the system state, y is the action, f(y; x) is a cost, and $y^*(x)$ is an optimal action

Difficulty: optimization is computationally expensive

Sometimes solving just **once** may be difficult Exasperated when **repeatedly solving** during deployment

Insight: optimal solutions share structure

Optimization problems share structure and don't live in isolation

Solution: amortized optimization

Use **machine learning** to uncover the shared structure Create **learning-augmented** versions of classical optimization solvers **Far surpasses** average or worst-case convergence rates

Also referred to as learning to optimize or data-driven optimization

Brandon Amos

Amortized optimization

This talk: Explore foundations and applications

Amortization model $\hat{y}_{\theta}(x)$ tries to approximate $y^{*}(x)$ **Example:** A neural network mapping from x to the solution

Loss \mathcal{L} measures how well \hat{y} fits y^* and optimized with $\min_{\theta} \mathcal{L}(\hat{y}_{\theta})$ **Example:** $\mathcal{L}(\hat{y}_{\theta}) \coloneqq \mathbb{E}_{p(x)} \| \hat{y}_{\theta}(x) - y^*(x) \|_2^2$

Amortized optimization is well-explored

My goal: characterize and connect applications previously developed independently

Variational inference	6.1	VAE SAVAE/IVAE	– ELBO	variational posterior	data 	full semi	$\mathcal{L}_{\mathrm{obj}} \mid$
Sparse coding	6.2	PSD LISTA	$\frac{1}{ }$	sparse code	data 	full semi	$\mathcal{L}_{ ext{reg}}$
Meta-learning	6.3	HyperNets LM MAML Neural Potts	task loss pseudo-likelihood	model parameters 	tasks protein sequences	full semi full	$egin{array}{c} \mathcal{L}_{ m obj} \ \mathcal{L}_{ m obj}^{ m RL} \ \mathcal{L}_{ m obj} \ \mathcal{L}_{ m obj} \ \mathcal{L}_{ m obj} \end{array}$
Fixed-points and convex optimization	6.4	NeuralFP HyperAA NeuralSCS HyperDEQ NeuralNMF RLQP	FP residual CP residual DEQ residual NMF residual R _{RLQP}	FP iterates CP iterates DEQ iterates factorizations QP iterates	FP contexts CP parameters DEQ parameters input matrices QP parameters	semi 	$\mathcal{L}^{\Sigma}_{\mathrm{obj}} \ \mathcal{L}^{\Sigma}_{\mathrm{reg}} \ \mathcal{L}^{\Sigma}_{\mathrm{obj}} \ \mathcal{L}^{\Sigma}_{\mathrm{obj}} \ \mathcal{L}^{\Sigma}_{\mathrm{obj}} \ \mathcal{L}^{\Sigma}_{\mathrm{obj}} \ \mathcal{L}^{\Sigma}_{\mathrm{obj}} \ \mathcal{L}^{\Sigma}_{\mathrm{obj}} \ \mathcal{L}^{\mathrm{RL}}_{\mathrm{obj}} \ \mathcal{L}^{\mathrm{RL}}$
Optimal transport	6.5	AmorConj <i>A</i> -SW Meta OT	<i>c</i> -transform obj max-sliced dist dual OT cost	$\begin{array}{c} \operatorname{supp}(\alpha) \\ \operatorname{slices} \Theta \\ \operatorname{optimal couplings} \end{array}$	$supp(\beta)$ mini-batches input measures	full 	$egin{array}{c} \mathcal{L}_{ m obj} \ \mathcal{L}_{ m obj} \ \mathcal{L}_{ m obj} \end{array}$
Reinforcement learning	6.6	BC/IL (D)DPG/TD3 PILCO POPLIN DCEM IAPO SVG SAC GPS	$\begin{array}{c} -Q\text{-value} \\ \\ \\ \\ D_{\mathcal{Q}} \text{ or } -\mathcal{E}_{Q} \\ \\ \\ \end{array}$	controls control dists	state space 	full full or semi semi full 	$egin{aligned} \mathcal{L}_{\mathrm{reg}} \ \mathcal{L}_{\mathrm{obj}} \ \mathcal{L}_{\mathrm{obj}} \ \mathcal{L}_{\mathrm{reg}} \ \mathcal{L}_{\mathrm{reg}} \ \mathcal{L}_{\mathrm{obj}} \ \mathcal{L}_{\mathrm{KL}} \end{aligned}$

This talk: amortized optimization

Design decisions

Modeling paradigms for \hat{y}_{θ} (fully-amortized and semi-amortized models) **Learning** paradigms for \mathcal{L} (objective-based and regression-based)

Selected applications

Reinforcement learning Neural Potts Model for protein modeling Meta optimal transport

This talk: amortized optimization

Design decisions

Modeling paradigms for \hat{y}_{θ} (fully-amortized and semi-amortized models) **Learning** paradigms for \mathcal{L} (objective-based and regression-based)

Selected applications

Reinforcement learning Neural Potts Model for protein modeling Meta optimal transport

Modeling paradigms for \hat{y}_{θ}

How to best-predict the solution?

Fully-amortized models: Map from the context *x* to the solution **without** accessing the objective *f*

Example: Neural network mapping from x to the solution

Most of our applications will focus on these

Semi-amortized models: Internally access the objective *f*

Example: Gradient-based meta-learning models such as MAML

$$\hat{y}^0_{\theta} \rightarrow \hat{y}^1_{\theta} \rightarrow \cdots \rightarrow \hat{y}^K_{\theta} =: \hat{y}_{\theta}(x)$$

Learning paradigms for ${\cal L}$

What should the model \hat{y}_{θ} optimize for?

Regression-based

 $\mathcal{L}_{\operatorname{reg}}(\hat{y}_{\theta}) \coloneqq \mathbb{E}_{p(x)} \| \hat{y}_{\theta}(x) - y^{\star}(x) \|_{2}^{2}$

- Does not consider f(y;x)
- + Uses global information with $y^{\star}(x)$
- Expensive to compute $y^{\star}(x)$
- + Does not compute $\nabla_y f(y; x)$
- Hard to learn non-unique $y^{\star}(x)$

Objective-based: $\mathcal{L}_{\text{obj}}(\hat{y}_{\theta}) \coloneqq \mathbb{E}_{p(x)} f(\hat{y}_{\theta}(x); x)$

- + Uses objective information of f(y; x)
- Can get stuck in local optima of f(y; x)
- + Faster, does not require $y^{\star}(x)$
- Often requires computing $\nabla_y f(y; x)$
- + Easily learns non-unique $y^{\star}(x)$

This talk: amortized optimization

Design decisions

Modeling paradigms for \hat{y}_{θ} (fully-amortized and semi-amortized models) **Learning** paradigms for \mathcal{L} (objective-based and regression-based)

Selected applications

Reinforcement learning Neural Potts Model for protein modeling Meta optimal transport

RL policy learning is amortized optimization

Setup: controlling a **continuous MDP** with a **model-free policy** $\pi_{\theta}(x)$

Review: Learning a policy with a **value gradient** amortizes over the *Q*-value: $\underset{\theta}{\operatorname{argmax}} \mathbb{E}_{p(x)} Q(x, \pi_{\theta}(x))$

The amortization perspective easily enables expanding beyond this fully-amortized setting

Semi-amortized policy learning

Iterative Amortized Policy Optimization

Joseph Marino* California Institute of Technology Alexandre Piché Mila, Université de Montréal

Alessandro Davide Ialongo University of Cambridge Yisong Yue California Institute of Technology

Abstract

Policy networks are a central feature of deep reinforcement learning (RL) algorithms for continuous control, enabling the estimation and sampling of high-value actions. From the variational inference perspective on RL, policy networks, when used with entropy or KL regularization, are a form of *amortized optimization*, optimizing network parameters rather than the policy distributions directly. However, *direct* amortized mappings can yield suboptimal policy estimates and restricted distributions, limiting performance and exploration. Given this perspective, we consider the more flexible class of *iterative* amortized optimizers. We demonstrate that the resulting technique, iterative amortized policy optimization, yields performance improvements over direct amortization on benchmark continuous control tasks. Accompanying code: github.com/joelouismarino/variational_rl.

Decision-time fine-tuning and planning

Rely on **standard policy methods** such as PPO to **amortize the solution to a game** Fine-tune at decision time by **constraining to the initial state** and **continuing policy optimization**

Hanabi scores

Scalable Online Planning via Reinforcement Learning Fine-Tuning		Variant	Blueprint	SPARTA (Single)	SH (]	PARTA Multi)	RL Search (Single)	RL Search (Multi)	
		Normal	$\begin{array}{c} 24.23 \pm 0.04 \\ 63.20\% \end{array}$	$\begin{array}{c} 24.57 \pm 0.0 \\ 73.90\% \end{array}$	3 24.6 7:	51 ± 0.02 5.46%	$\begin{array}{c} 24.59 \pm 0.02 \\ 75.05\% \end{array}$	$\begin{array}{c} \textbf{24.62} \pm \textbf{0.03} \\ \textbf{75.93\%} \end{array}$	
			2 Hints	$\begin{array}{c} 22.99 \pm 0.04 \\ 17.50\% \end{array}$	$\begin{array}{c} 23.60 \pm 0.0 \\ 25.85\% \end{array}$	3 23.6 20	67 ± 0.03 6.87%	$23.61 \pm 0.03 \\ 27.85\%$	$\begin{array}{c} \textbf{23.76} \pm \textbf{0.04} \\ \textbf{31.01\%} \end{array}$
Arnaud Fickinger* Facebook AI Research Face arnaudfickinger@fb.com he	Hengyuan Hu * ebook AI Research ngyuan@fb.com	Brandon Amos Facebook AI Research bda@fb.com	Ms. P	acman sc	ores	-			
Stuart Russell	No	am Brown	Additi	onal Samples	0	3.10^{5}	4.10^{5}	8.10^{5}	
UC Berkeley Fac russell@berkeley.edu no	Facebo	ok AI Research	RL Fi	ne-Tuning	1880	3940	4580	5510	
				raining	1880	1900	1900	1920	

Amortization via learning latent subspaces

Full control sequence space

Amortize the problem by learning a latent subspace of optimal solutions Only search over optimal solutions rather than the entire space

$$x_{1:T}^{\star}, u_{1:T}^{\star} \in \underset{x_{1:T}, u_{1:T}}{\operatorname{argmin}} \sum_{t} \underbrace{\sum_{t}^{\text{cost}} \mathcal{C}_{\theta}(x_t, u_t)}_{t} \text{ s.t.} \underbrace{x_1 = x_{\text{init}}}_{t} \underbrace{\begin{array}{c} \text{dynamics} \\ x_{t+1} = f_{\theta}(x_t, u_t) \end{array}}_{t} \underbrace{\begin{array}{c} \text{constraints} \\ u_t \in \mathcal{U} \end{array}}_{t} \underbrace{\begin{array}{c} \text{Subspace of} \\ \text{optimal solutions} \end{array}}_{t}$$

Amortization via learning latent subspaces

Amortized optimization

Brandon Amos

VAE amortization is conceptually the same as RL

Brandon Amos

Amortized optimization

This talk: amortized optimization

Design decisions

Modeling paradigms for \hat{y}_{θ} (fully-amortized and semi-amortized models) **Learning** paradigms for \mathcal{L} (objective-based and regression-based)

Selected applications

Reinforcement learning Neural Potts Model for protein modeling Meta optimal transport

Neural Potts Model

NPM forward pass

x

 $W_{\theta}(\boldsymbol{x})$

→

This talk: amortized optimization

Design decisions

Modeling paradigms for \hat{y}_{θ} (fully-amortized and semi-amortized models) **Learning** paradigms for \mathcal{L} (objective-based and regression-based)

Selected applications

Reinforcement learning Neural Potts Model for protein modeling Meta optimal transport

Meta Optimal Transport

Goal: optimally transport mass between measures α to β

 $\pi^{\star}(\alpha,\beta,c) \in \operatorname*{argmin}_{\pi \in \mathcal{U}(\alpha,\beta)} \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) d\pi(x,y)$

Use **amortization** when **repeatedly coupling measures** e.g., between pairs of images or physical transport

Often amortize over unconstrained dual potentials

61597993 052856684 6934130 1156816 289567039 44 004039 25774861

Optimally transport between MNIST digits

Meta OT for Sinkhorn

Discrete (Entropic)

Sinkhorn (converged, ground-truth)

Meta OT (initial prediction)

Meta OT significantly improves Sinkhorn

Meta OT for Continuous OT with Meta ICNNs

Meta ICNN: Predict parameters of ICNN coupling α and β

More Meta OT color transfer predictions

Future directions and limitations

Amortized optimization is established and budding with new methods and applications

Possible to expand far beyond unconstrained continuous Euclidean optimization settings:

- 1. New applications and settings for semi-amortized modeling
- 2. Constrained domains (e.g., with differentiable projections)
- 3. Discrete optimization settings (e.g., with differentiable discrete optimization)
- 4. Non-Euclidean settings (e.g., with Riemannian optimization)

Potential limitations:

- 1. Difficult in **out-of-domain settings** when the contexts significantly change
- 2. Generally difficult to ensure stability or convergence
- 3. Typically does not solve previously intractable problems
- 4. Can be difficult to obtain high-accuracy solutions without fine-tuning/semi-amortization

Tutorial on amortized optimization

Github.com/facebookresearch/amortized-optimization-tutorial

Brandon Amos

Meta AI NYC, Fundamental AI Research (FAIR)

The differentiable cross-entropy method [Amos and Yarats, ICML 2020] Neural Potts Model [Sercu*, Verkuil*, et al., MLCB 2020] On the model-based stochastic value gradient [Amos, Stanton, Yarats, Wilson, L4DC 2021] Online planning via RL fine-tuning [Fickinger*, Hu*, et al., NeurIPS 2021] Neural fixed-point acceleration [Venkataraman and Amos, ICML AutoML Workshop, 2021] Meta Optimal Transport [Amos, Cohen, Luise, Redko, arXiv 2022] Tutorial on amortized optimization [Amos, arXiv 2022]

Collaborators: Noam Brown, Caroline Chen, Samuel Cohen, Arnaud Fickinger, Hengyuan Hu, Yann LeCun, Zeming Lin, Jason Liu, Giulia Luise, Joshua Meier, Ievgen Redko, Tom Sercu, Alexander Rives, Samuel Stanton, Shoba Venkataraman, Stuart Russel, Robert Verkuil, Andrew Gordon Wilson, Denis Yarats