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Control is powerful*

*when properly set up

Setting: deterministic, discrete-time system with a continuous state-action space
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Widely deployed over the past century for aviation, robotics, autonomous driving, HVAC
Often for a Markov decision process but doesn’t have to be

The real-world is non-convex, so are our controllers
Convex in some cases and subproblems, e.g., with quadratic cost/linear dynamics (LOR)

NO LEARNING NECESSARY if we know the system — just pure optimization

Notation: 0 are the parameters of the controller (usually of the cost or dynamics)




Model-free RL and control

Take the cost to be the (negated) value estimate, no dynamics
Value estimate approximates the model-based objective
Policy learning performs amortized optimization

Viewpoint leads to a model-based to model-free spectrum:

take short-horizon model-based rollouts with a value estimate at the end =
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Control may fail for many reasons

( N
cost initial state dynamics constraints
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Control starts failing us when we can’t describe everything
Impossible to analytically encode every detail of non-trivial systems

Cost and dynamics may be unknown, mis-specified, or inaccurate
Especially difficult in high-dimensional state-action spaces

Learning methods help but are not perfect
system identification, learning dynamics, inverse cost learning
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Controllers don’t live in isolation

We can often measure the downstream performance induced by the controller
Idea: optimize (i.e., tune/learn) the parameters for a downstream performance metric
Controller-design loop is not a new idea and has been extensively used over the past century
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n n controller parameters

(design space of cost and model)
solve control optimization problem
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cost initial state dynamics constraints
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This talk: differentiate the controller!

We can often measure the downstream performance induced by the controller
Idea: optimize (i.e., tune/learn) the parameters for a downstream performance metric

by differentiating through the control optimization problem

/ﬁ\

differentiable control

Vod (mg)

or Dg (g (x))

controller parameters
(design space of cost and model)

solve control optimization problem
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Full notation: uj.r (xjnit, &)

def

g (x) & ui(x, 9)] execute control policy on the system

measure downstream performance of the controller



This talk: differentiate the controller!

Foundations of differentiable optimization and control
Unrolling or autograd (gradient descent, differentiable cross-entropy method)
Implicit differentiation (convex and non-convex MPC)

cvxpy layers: Prototyping differentiable convex optimization and control
Applications of differentiable control

Objective mismatch
Amortized control
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Derivatives in RL and control

The policy (or value) gradient Differentiable control — this talk

Derivative of value w.r.t. a parameterized policy: Derivative of actions w.r.t. controller parameters:
VoEyx, [Q(xs mo(xe))] duy.r(6)/06

For policy learning via amortized optimization Controller induces a model-based policy

@-value can be model-based or model-free Lo g _: u*(6)

Works for deterministic and stochastic policies
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Each vertical slice is a control problem



How to differentiate the controller?

Unrolling or autograd Implicit differentiation
ﬂ0—>ﬂ1—>—>ﬁK—>ﬁ9(x)—> * * -1 *
0 w Dou*(6) = —D,g(6,u*(8)) Dgg(0,u*(8))
Idea: Implement controller, let autodiff do the rest Idea: Differentiate controller’s optimality conditions

Like MAML’s unrolled gradient descent

Agnostic of the control algorithm
Ideal when unconstrained with a short horizon Ill-defined if controller gives suboptimal solution
Does not require a fixed-point or optimal solution Memory and compute efficient: free in some cases
Instable and resource-intensive for large horizons

Can unroll algorithms beyond gradient descent
The differentiable cross-entropy method
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How to differentiate the controller?

Unrolling or autograd Implicit differentiation

g = Uy = - =>4 = T9(z) > T | Dyur(@) = —Dyug(6,u (@) 'Dag(6,u*(6))

Idea: Implement controller, let autodiff do the rest Idea: Differentiate controller’s optimality conditions

Like MAML’s unrolled gradient descent
Agnostic of the control algorithm

Ideal when unconstrained with a short horizon Ill-defined if controller gives suboptimal solution
Does not require a fixed-point or optimal solution Memory and compute efficient: free in some cases
Instable and resource-intensive for large horizons

Can unroll algorithms beyond gradient descent
The differentiable cross-entropy method
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The Differentiable Cross-Entropy Method (DCEM)

(The cross-entropy method (CEM) optimizer: )
1. Samples from the domain with a Gaussian

2. Updates the Gaussian with the top-k values

. J

Solves challenging non-convex control problems
G‘he differentiable cross-entropy method (DCEM)?
Use unrolling to differentiate through CEM using:
1. the reparameterization trick for sampling
&. a differentiable top-k operation (LML)
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From the softmax to soft/differentiable top-k

Constrained softmax, constrained sparsemax, Limited Multi-Label Projection

mA(x) = argmin —y'x — H(y) My, = argmin —y'x — Hy(y)
y # y
st. 0<y<1 subjectto 0 <=y <1

1Ty =1 1Ty =k
Has closed-form solution ma(x) = Z-e;?:pxx- No closed-form solution, can still differentiate
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Entropy penalty of the softmax

top-k polytope
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Unrolling or autograd

Idea: Implement controller, let autodiff do the rest
Like MAML’s unrolled gradient descent

Ideal when unconstrained with a short horizon
Does not require a fixed-point or optimal solution
Instable and resource-intensive for large horizons

Can unroll algorithms beyond gradient descent
The differentiable cross-entropy method

Implicit differentiation

Dou*(8) = —Dyug(6,u*(0))” Dag(6,u*(6))

Idea: Differentiate controller’s optimality conditions

Agnostic of the control algorithm
Ill-defined if controller gives suboptimal solution
Memory and compute efficient: free in some cases
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The Implicit Function Theorem

Dini 1877, Dontchev and Rockafellar 2009

Contour of g(8,u) defining an implicit function
Given an implicit function u*(8): R™" - R™ u*(0)
defined by u*(6) € {u: g(6,u) = 0} where 1.0)
g(6,u): R*xXR™ - R
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The Implicit Function Theorem gives u |
ol & Y Ay

Dou*(6) = —Dyug(6,u*(8))” Deg(6,u*(0))
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Each vertical slice is a control problem
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Implicitly differentiating convex LQR control

min 2 T CeTe + CeTy St Xeyr = FeTe + fr %o = Xjpit
T={xt,Ut}

 Parameters: 0 = {C;, c¢, Fy, Fi }

N
g Tt At o Tt )\t—i—l_ )

Define implicit function via KKT optimality conditions CtFtT """ - e,
Find z* s.t. Kz* + k = 0 where z* = [1%, ...] B __I__i__[i?___Q]_________L _____ Nl | f

. . . . : — : T Ti41 Ct+1
Solved with Riccati recursion 5 {0] i Civ1  F | N for

l ______________________ Fegn : :

Backward pass: implicitly differentiate the LQR KKT conditions:
ot _1 * * * * ag_ * or — A% d* VT*Z
a0, =3 [dr @ + i ®d) o~ I e~ % where K dit == 0 | €
% =d},,, T + Ay, ®d}, E?_th =d}, 5 : Just another LQR problem!




Differentiating non-convex MPC

4 N
cost initial state dynamics constraints
X1.7,Uj.7 € argmin Z Co(xe, up)| sit.|x1 = Xipit| |Xe+1 = fo(xp, ue) | [ue €U
X1:.T,U1.T t
\. J
Solve with sequential quadratic programming (SQP)
Approximate non-convex argmin with the final convex approximation
Backward pass: differentiate the convex approximation, e.g., with:
ot _1 * * * * ag_ * or — A% d* VT*K
8_C't = 5 (th ®Tt +’7—t & th) 6_Ct = a,, ax—mlt = d>\0 Where K di{t — Ot \
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This talk: differentiate the controller!

Foundations of differentiable optimization and control
Unrolling or autograd (gradient descent, differentiable cross-entropy method)
Implicit differentiation (convex and non-convex MPC)

cvxpy layers: Prototyping differentiable convex optimization and control
Applications of differentiable control

Objective mismatch
Amortized control
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Optimization layers need to be carefully implemented

dQz* + Qdz + dg + dATv*+
ATdy +dGTX* + GTdA =0
dAz*+ Adz—db=0
D(Gz* — h)dA + D(X*)(dGz* + Gdz —dh) =0

Q AT G7] [d
A0
G & 0| 0

invQ_AT = A.transpose(l, 2).lu_solve(*Q_LU)
A_invQ_AT = torch.bmm(A, invQ_AT)
G_invQ_AT = torch.bmm(G, invQ_AT)

o||g|l=-| o0

LU_A_invQ_AT = lu_hack(A_invQ_AT)
P_A_invQ_AT, L_A_invQ_AT, U_A_invQ_AT = torch.lu_unpack(*
P_A_invQ_AT = P_A_invQ_AT.type_as(A_invQ_AT)

Q GT AT [dz —dQz* — dg — dGTA\* — d AT
DG D(Gz*—h) 0| |dA]| = D(X*)dGz* + D(\*)dh AT O e
( ) ( Z = ) = =~ ( ) 2"+ ( ) U_A_invQ_AT_inv = CP_A_invQ_AT.bmm(L_A_invQ_AT)
A 0 0 dv —dAz* L db ‘ ).lu_solvg("‘LU_A_?an_AT)
K S_LU_21 = G_invQ_AT.bmm(U_A_invQ_AT_inv)
- ™ N T = G_invQ_AT.transpose(l, 2).lu_solve(*LU_A_invQ_AT)
Tt At Tt+1 At41 S_LU_12 = U_A_invQ_AT.bmm(T)
i | i : i [ . 1 S_LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(Q)
IRk EPE LR G EEEEEEl EEEED : : Vol = =(d, 2T + 2dT V..=d S_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),
5% B —1 0] | I\t: < ? 2( ’ 2 5 : torch.cat((S_LU_21, S_LU_22), 2)),
R e B A== Cﬁl Val=d,z" +vd’ Vil = —d, 1
: I T t+1 S_LU_pivots[:, :neq] = LU_A_invQ_AT[1]
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______________________ Foyo 0 ; . R -= G_invQ_AT.bmm(T)
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Why should practitioners care?

dQz* + Qdz + dg + dATv*+ L

, T * ) invQAT = A.t (1, 2).lu_solve(*Q_LU)
ATdy 1 &N + Tr=0 |€ A G| |4z Vol | ey say
dAz* + Adz — db = 0 {1 0 O i‘ = — O G_invQ_AT = torch.bmm(G, invQ_AT)
D(G2* — h)dA + D LGd:—dny—o LG 0 0 b 0 LUA{VQAT = u_hack

P_A_iNVQAT, LA~ _A_invQ_AT = torch.lu_unpack(*
P_A_invQ_AT AT . type_as(A_invQ_AT)

Q GT dz —dQz* — dg — dGT X \* — dATV*
* g U AINVQAT[O]
D(A\*)G D(Gz*—h) 0 —D(A\*)dGz* + D(A*)dh _WVQAT_inv = (P_A_invQ_AT.bmm(L_A_invQ_AT)
A 0 0 dl/ —dAZ* -+ db ). lu_solve(*LU_A_invQ_AT)
K S_LU_21 = G_invQ _AT.bmm(U_A_invQ_AT_inv)
% ~ T = G_invQ_AT.transpose(l, 2).lu_solve(*LU_A_invQ_AT)
T A T4l Al S_LU_12 = U_A_invQ_AT.bmm(T)
[ : 1 T T : ] : S_LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(Q)
SRR o R 7 L S S . : S_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),
t t Ty Ct torch.cat((S_LU_21, S_LU_22), 2)),
,,,,,,, LSS b? S U S S ALl + vdT V! 1D
—I T | - S_LU_pivots[:, :neq] = LU_A_invQAT[1]
[ o] Gt Fria f+1 Vel = D(\*)(daz" + AdY) Vil =-D
______________________ Fopn ; ~0_AT.bmm(T)

1 oY
== (d&r, @7 + 77 ®@dy},) — =d}, d. Q G D 2
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o7, ~ D ®T¢ H A @dn, a5, ~ %
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Differentiable convex optimization layers

NeurlPS 2019 and officially in CVXPY!
Joint work with A. Agrawal, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter

Useful for convex control problems and subproblems

VX py

x*(0) = argmin f(x;0)

O PyTorch

X
subjectto g(x;60) <0

h(xi6) = 0 Tensor

locuslab.github.i0/2019-10-28-cvxpylayers
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locuslab.github.io/2019-10-28-cvxpylayers

Rapidly prototyping optimization layers

Inputs

Brandon Amos

cvxpy optimization layer

Zi+1 = argmin fp(z, z;)

s.t. z € Cg(z;)

Z

Backprop

| oss

Parameters

Variables

Constants

Problem

Objective
Constraints

Canonicalized
Cone Program

argmin ¢’

X
st. Ax <i b

X

Cone Program
Solution

Original Problem
Solution

Differentiable optimization for control and RL
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Code example: OptNet QP

Before: 1k lines of code Now: <10 lines of code
Hand-implemented and optimized PyTorch GPU- Same speed

capable batched primal-dual interior point method

1
x* = argmin ExTQx +pTx
Z
st. Ax =b
Gx < h
L 6 = {0,p,A,b,G, h) )

obj =—cp.Minimize(O.S*Cp.quad_form(x, Q) + p.T * x)
cons = [A*x == b, G*x <= h] Write standard CVXPY problem

prob = cp.Problem(obj, cons)
layer = CvxpyLayer (prob, params=[Q, p, A, b, G, h]l, out=[x] ExporttoPyTorch, TensorFlow, JAX
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Under the hood: cone program differentiation

Section 7 of my thesis and in Agrawal et al.
x* = argmin c'x
X

subjectto b —Ax € K

4
4

Implicitly differentiating R gives D, (z*) = —(DZR(Z*))_lDH:R(z*)

Conic Optimality
Find z* s.t. R(z*,0) = 0

Brandon Amos Differentiable optimization for control and RL
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This talk: differentiate the controller!

Foundations of differentiable optimization and control
Unrolling or autograd (gradient descent, differentiable cross-entropy method)
Implicit differentiation (convex and non-convex MPC)

cvxpy layers: Prototyping differentiable convex optimization and control
Applications of differentiable control

Objective mismatch
Amortized control
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The Objective Mismatch Problem

Summary: Maximume-likelihood training of dynamics separate from controlling the dynamics
Especially problematic with inaccurate models

The controller (i.e. policy) optimizes over the dynamics
Can find adversarial trajectories that appear deceptively “good”

Differentiable control one potential solution, may be combined with many others:
advantage weighting, value-gradient weighting, value-aware model learning

Training: Maximum Likelihood

Control

—>

Interacts

-3 | Environment

Policy mg(x)

Objective Mismatch ¢y Responses

—X
State Transitions

Brandon Amos Differentiable optimization for control and RL
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Optimizing the task loss is better than SysID

Approximate
Model Class

Best Imitation Loss

True Model *‘

True System: Pendulum environment with noise (damping and a wind force)
Approximate Model: Pendulum without the noise terms

Best MSE

SysID Loss Imitation Loss
0.010 0.3

~1.8x difference!

O 50 100 150 200 250 0 50 100 150 200 250

Epoch Epoch
M Vanilla Sysld Baseline M (Ours) Directly optimizing the Imitation Loss
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Optimizing system models with a task loss

Among many others!

Using a Financial Training Criterion
Rather than a Prediction Criterion’

Yoshua Bengio’

Gnu-RL: A Precocial Reinforcement Learning Solution for
Building HVAC Control Using a Differentiable MPC Policy

Bingqing Chen Zicheng Cai Mario Bergés
Carnegie Mellon University Dell Technologies Carnegie Mellon University
Pittsburgh, PA, USA Austin, TX, USA Pittsburgh, PA, USA
bingginc@andrew.cmu.edu zicheng.cai@dell.com mberges@andrew.cmu.edu

Smart “Predict, then Optimize”

Adam N. Elmachtoub
Department of Industrial Engineering and Operations Research and Data Science Institute, Columbia University, New York,
NY 10027, adam@jieor.columbia.edu

Paul Grigas

Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720,
pgrigas@berkeley.edu

Task-based End-to-end Model Learning
in Stochastic Optimization

Priya L. Donti Brandon Amos J. Zico Kolter
Dept. of Computer Science Dept. of Computer Science ~ Dept. of Computer Science
Dept. of Engr. & Public Policy = Carnegie Mellon University = Carnegie Mellon University
Carnegie Mellon University Pittsburgh, PA 15213 Pittsburgh, PA 15213
Pittsburgh, PA 15213 bamos@cs.cmu.edu zkolter@cs.cmu.edu

pdonti@cs.cmu.edu

Learning Convex Optimization Control Policies

Akshay Agrawal AKSHAYKA @CS.STANFORD.EDU
Shane Barratt SBARRATT @ STANFORD.EDU
Stephen Boyd BOYD @STANFORD.EDU

450 Serra Mall, Stanford, CA, 94305

Bartolomeo Stellato* STELLATO @MIT.EDU
77 Massachusetts Ave, Cambridge, MA, 02139
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This talk: differentiate the controller!

Foundations of differentiable optimization and control
Unrolling or autograd (gradient descent, differentiable cross-entropy method)
Implicit differentiation (convex and non-convex MPC)

cvxpy layers: Prototyping differentiable convex optimization and control
Applications of differentiable control

Objective mismatch
Amortized control
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RL policy learning is amortized optimization

Setup: controlling a continuous MDP with a model-free policy 4 (x)

Review: Learning a policy with a value gradient amortizes over the Q-value:
argmax Ey () Q(x, g (1))

g (x) is fully amortized: tries to predict the max-Q operation without looking at the Q function!
The amortization perspective easily enables us to consider other policies

Deterministic Policy Stochastic Policy

()
Q(z,u) Q(z, u) mo(2)
&
p(z) B

r1 T2 T3 Ty I5 Te X7 X8 IT9 T10 T11 T12



Amortized control via unrolled gradient descent

The policy’s prediction is adapted to maximize the Q function for every state
Unrolled gradient descent: policy has knowledge it is going to be adapted
Can generalize to other differentiable optimizers, e.g., the cross-entropy method

Iterative Amortized Policy Optimization

Joseph Marino* Alexandre Piché
California Institute of Technology Mila, Université de Montréal
Alessandro Davide Ialongo Yisong Yue

University of Cambridge California Institute of Technology
Abstract

Policy networks are a central feature of deep reinforcement learning (RL) algo-
rithms for continuous control, enabling the estimation and sampling of high-value
actions. From the variational inference perspective on RL, policy networks, when
used with entropy or KL regularization, are a form of amortized optimization, opti-
mizing network parameters rather than the policy distributions directly. However,
direct amortized mappings can yield suboptimal policy estimates and restricted
distributions, limiting performance and exploration. Given this perspective, we con-
sider the more flexible class of iterative amortized optimizers. We demonstrate that
the resulting technique, iterative amortized policy optimization, yields performance
improvements over direct amortization on benchmark continuous control tasks.
Accompanying code: github.com/joelouismarino/variational_rl.

Direct Policy Network

[terative Policy Network
Optimal Estimate

333
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Optimal control sequences share structure

Full control sequence space

Control optimization problems are repeatedly solved for every state
Optimal control sequences do not live in isolation and share structure

Use differentiable control to learn a latent subspace
Only search over optimal solutions rather than the entire space
Amortizes the original control optimization problem

Subspace of
optimal solutions

Cartpole videos Optimal controls over time — force on the cartpole

\

-———-—1—_--

N,

|

/
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DCEM learns the solution space structure

CEM over the full action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

u* = argmin f(u)
u€lo,1]N

Controls
1

Full control sequence space

Timestep Timestep Timestep Timestep

DCEM over the latent action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

Subspace of
optimal solutions

Controls

Timestep Timestep

Latent space
of optimal solutions

Latent Dim 2

Latent Dim 1 Latent Dim 1 Latent Dim 1 Latent Dim 1
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Closing Thoughts And Future Directions

Differentiable optimization and control are powerful primitives to use within larger systems
Theoretical and engineering foundations are here
Works for convex and non-convex control
Specify and hand-engineer the parts you know, learn the rest
Can be propagated through and learned, just like any layer

Applicationsin:
Objective mismatch
Amortized optimization
Safe and robust control
Learning state embeddings

Brandon Amos Differentiable optimization for control and RL
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