Differentiable optimi control and reinforcem **Brandon Amos**

Brandon Amos

Meta AI NYC, Fundamental AI Research (FAIR) mental AI Research (FAIR)

0<u>gith</u>

Solandondamos Ghamos.github.io

Collaborators: Akshay Agrawal, Shane Barratt, Byron Boots, Stephen Boyd, Roberto Jimenez, Zico Kolter, Nathan Lambert, Jacob Sacks, Samuel Stanton, Andrew Gordo
.

Control is powerful*

*when properly set up

Setting: deterministic, discrete-time system with a **continuous state-action space**

$$
x_{1:T}^{\star}, u_{1:T}^{\star} \in \underset{x_{1:T}, u_{1:T}}{\text{argmin}} \sum_{t} \frac{\text{cost}}{\left[\mathcal{C}_{\theta}(x_t, u_t)\right]} \text{ s.t. } \boxed{x_1 = x_{\text{init}} \left[x_{t+1} = f_{\theta}(x_t, u_t)\right]} \text{ constraints}
$$

Full notation: $u_{1:T}^{\star}(x_{\textsf{init}}, \theta)$

Widely deployed over the past century for aviation, robotics, autonomous driving, HVAC Often for a **Markov decision process** but doesn't have to be

The **real-world is non-convex**, so are our controllers **Convex** in some cases and subproblems, e.g., with quadratic cost/linear dynamics (LQR)

NO LEARNING NECESSARY if we know the system — just pure optimization

Notation: θ are the **parameters** of the controller (usually of the cost or dynamics)

Model-free RL and control

Take the **cost** to be the (negated) **value estimate**, **no dynamics Value estimate** approximates the **model-based objective Policy learning** performs **amortized optimization**

Viewpoint leads to a **model-based to model-free spectrum:** take **short-horizon model-based rollouts** with a **value estimate at the end**

Control may fail for many reasons

Full notation: $u_{1:T}^{\star}(x_{\textsf{init}}, \theta)$

Control starts failing us when we can't describe everything **Impossible** to analytically **encode every detail** of non-trivial systems

Cost and **dynamics** may be **unknown, mis-specified,** or **inaccurate** Especially difficult in **high-dimensional state-action spaces**

Learning methods help but **are not perfect** system identification, learning dynamics, inverse cost learning

Controllers don't live in isolation

We can often measure the **downstream performance** induced by the controller **Idea: optimize** (i.e., tune/learn) the parameters for a **downstream performance metric** Controller-design loop is **not** a new idea and has been extensively used over the past century

This talk: differentiate the controller!

We can often measure the **downstream performance** induced by the controller **Idea: optimize** (i.e., tune/learn) the parameters for a **downstream performance metric** by **differentiating through the control optimization problem**

This talk: differentiate the controller!

Foundations of differentiable optimization and control

Unrolling or autograd (gradient descent, differentiable cross-entropy method) Implicit differentiation (convex and non-convex MPC)

cvxpylayers: **Prototyping** differentiable convex optimization and control

Applications of differentiable control

Objective mismatch Amortized control

Derivatives in RL and control

The policy (or value) **gradient**

Derivative of **value** w.r.t. a **parameterized policy**:

 $\nabla_{\theta} \mathbb{E}_{x_t} [Q(x_t, \pi_{\theta}(x_t))]$

For policy learning via **amortized optimization**

-value can be model-based or model-free Works for deterministic and stochastic policies

Differentiable control — this talk

Derivative of **actions** w.r.t. **controller parameters**:

 $\partial u_{1:T}^{\star}(\theta)/\partial\theta$

Controller induces a **model-based policy**

How to differentiate the controller?

Unrolling or autograd

$$
\hat{u}_{\theta}^{0} \implies \hat{u}_{\theta}^{1} \implies \cdots \implies \hat{u}_{\theta}^{K} \implies \hat{\pi}_{\theta}(x) \implies \mathcal{J}
$$

Idea: Implement controller, let **autodiff** do the rest Like MAML's unrolled gradient descent

Ideal when **unconstrained** with a **short horizon** Does **not** require a fixed-point or optimal solution **Instable and resource-intensive** for large horizons

Can unroll algorithms **beyond gradient descent** The differentiable cross-entropy method

Implicit differentiation

$$
\hat{\theta} \implies \hat{\pi}_{\theta}(x) \implies \mathcal{J} \qquad D_{\theta} u^{\star}(\theta) = -D_{u} g(\theta, u^{\star}(\theta))^{-1} D_{\theta} g(\theta, u^{\star}(\theta))
$$

Idea: Differentiate controller's optimality conditions

Agnostic of the control algorithm **Ill-defined** if controller gives **suboptimal solution Memory** and **compute** efficient: free in some cases

How to differentiate the controller?

Unrolling or autograd

$$
\hat{u}_{\theta}^{0} \rightleftharpoons \hat{u}_{\theta}^{1} \rightleftharpoons \cdots \rightarrow \hat{u}_{\theta}^{K} \rightleftharpoons \hat{\pi}_{\theta}(x) \rightarrow J
$$

Idea: Implement controller, let **autodiff** do the rest Like MAML's unrolled gradient descent

Ideal when **unconstrained** with a **short horizon** Does **not** require a fixed-point or optimal solution **Instable and resource-intensive** for large horizons

Can unroll algorithms **beyond gradient descent** The differentiable cross-entropy method

Implicit differentiation

$$
D_{\theta}u^{\star}(\theta) = -D_{u}g(\theta, u^{\star}(\theta))^{-1}D_{\theta}g(\theta, u^{\star}(\theta))
$$

Idea: Differentiate controller's optimality conditions

Agnostic of the control algorithm **Ill-defined** if controller gives **suboptimal solution Memory** and **compute** efficient: free in some cases

The Differentiable Cross-Entropy Method (DCEM)

The **cross-entropy method (CEM)** optimizer: 1. **Samples** from the domain with a Gaussian 2. **Updates** the Gaussian with the **top-k values**

Solves challenging **non-convex control** problems

The differentiable cross-entropy method (DCEM): Use **unrolling** to differentiate through CEM using: 1. the **reparameterization trick** for sampling 2. a **differentiable top-k operation** (LML)

From the softmax to soft/differentiable top-k

Constrained softmax, constrained sparsemax, Limited Multi-Label Projection

$$
\pi_{\Delta}(x) = \underset{y}{\operatorname{argmin}} \quad -y^{\top}x - H(y) \qquad \pi_{\Delta_k} = \underset{y}{\operatorname{argmin}} \quad -y^{\top}x - H_b(y) \qquad \text{subject to} \quad 0 \le y \le 1
$$
\n
$$
1^{\top}y = 1 \qquad 1^{\top}y = k
$$

Has closed-form solution $\pi_{\Delta}(x) = \frac{\exp x}{\Sigma_i \exp x_i}$

No closed-form solution, can still differentiate

How to differentiate the controller?

Unrolling or autograd

$$
\hat{u}_{\theta}^{0} \implies \hat{u}_{\theta}^{1} \implies \cdots \implies \hat{u}_{\theta}^{K} \implies \hat{\pi}_{\theta}(x) \implies \mathcal{J}
$$

Idea: Implement controller, let **autodiff** do the rest Like MAML's unrolled gradient descent

Ideal when **unconstrained** with a **short horizon** Does **not** require a fixed-point or optimal solution **Instable and resource-intensive** for large horizons

Can unroll algorithms **beyond gradient descent** The differentiable cross-entropy method

Implicit differentiation

$$
D_{\theta}u^{\star}(\theta) = -D_{u}g(\theta, u^{\star}(\theta))^{-1}D_{\theta}g(\theta, u^{\star}(\theta))
$$

Idea: Differentiate controller's optimality conditions

Agnostic of the control algorithm **Ill-defined** if controller gives **suboptimal solution Memory** and **compute** efficient: free in some cases

The Implicit Function Theorem

Dini 1877, Dontchev and Rockafellar 2009

Given an **implicit function** $u^*(\theta)$: $\mathbb{R}^n \to \mathbb{R}^m$ defined by $u^*(\theta) \in \{u: g(\theta, u) = 0\}$ where $g(\theta, u): \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$

How can we compute $D_\theta u^*(\theta)$?

The **Implicit Function Theorem** gives

$$
D_{\theta}u^{\star}(\theta) = -D_{u}g(\theta, u^{\star}(\theta))^{-1}D_{\theta}g(\theta, u^{\star}(\theta))
$$

under mild assumptions

Contour of $g(\theta, u)$ defining an **implicit function**

Implicitly differentiating convex LQR control \mathbb{R} with respect to \mathbb{R} *^t* yields where the initial constraint *x*¹ = *x*init is represented by setting *F*⁰ = 0 and *f*⁰ = *x*init. Differentiating **Emplicitly** ^r⌧*tL*(⌧ ?*,* ?) = *^Ct*⌧ ? *^t* + *C^t* + *F* > *^t* ? *^t* ? *t*1 0 L = 0*,* (5) 6 \bullet 6 6 6 4 *CABVAV Ft*+1 2 $\overline{}$ $\overline{}$ 7 5 6 6 4 ? *t*+1 7 **7** 5 6 6 4 *ft*+1 . . . 7 7 **C**

as an efficient way of solving the following KKT system

 τ_t λ_t τ_{t+1} λ_{t+1} the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to

 C_t F_t ^{\vdash}

 $\overline{1}$ $\frac{-I}{\Omega}$ $\overline{0}$

 $\sqrt{2}$

. (6)

^T = *CT ,x*⌧ ?

...

^T + *cT ,x,* ?

 \mathcal{G} and \mathcal{G} ? The set of \mathcal{G}

t d
d
d
d
d

^t+1 ⌦ *^d*?

 $\left| \right|$ $\overline{1}$ $\left| \right|$ $\left| \right|$ $\overline{1}$ $\left| \right|$ $\left| \right|$ $\overline{1}$ \overline{a} 4

^t + ⌧ ?

t + $\frac{1}{2}$

K τ } τ } τ τ_t λ_t τ_{t+1} λ_{t+1}

t,x?

 C_{t+1} F_{t+1}

= *d*?

^t+1 + *Ct,x*⌧ ?

 F_{t+1}

t+1

...

3

 $\sqrt{2}$

. . . 3

 \mathbf{r} $\mathbf{1}$ $\mathbf{1}$ \mathbf{r} $\mathbf{1}$ \mathbf{r} $\mathbf{1}$ $\overline{1}$

 $\begin{array}{|c|c|c|}\n\hline\n\text{-1} & \text{-1} \\
\hline\n\end{array}$

 $=$ $-$

 $\sqrt{2}$

. . . *ct ft ct*+1 f_{t+1} . . .

3

 \mathbf{r} $\mathbf{1}$ \mathbf{r} \mathbf{r} $\mathbf{1}$ \mathbf{r} $\mathbf{1}$ $\overline{1}$

 $\left| \right|$ $\left| \right|$ $\overline{1}$ $\left| \right|$ $\left| \right|$ $\left| \right|$ $\left| \right|$ 4

 $\tau^\star_{t+\tau}$
 τ^\star_{t+1}
 λ^\star_{t+1}

. .

 \mathbf{I} $\left| \right|$ $\overline{1}$ \mathbf{I} $\left| \right|$ \mathbf{I} $\left| \right|$ 4

@`

 $\mathbf{1}$

 \mathcal{L} $\mathbf{1}$ \mathbf{r} $\frac{1}{2}$ $\mathbf{1}$ \mathbf{r} $\mathbf{1}$ $\mathbf{1}$ $\mathbf{1}$ \perp

 F_t [*I* 0]

T

 $\left[\begin{array}{c}0\end{array}\right]$ $\left[\begin{array}{c}C_t\end{array}\right]$

$$
\begin{cases}\n\min_{\tau = \{x_t, u_t\}} \sum_t \tau_t^T C_t \tau_t + c_t \tau_t \text{ s.t. } x_{t+1} = F_t \tau_t + f_t \quad x_0 = x_{\text{init}} \\
\text{Parameters: } \theta = \{C_t, c_t, F_t, F_t\}\n\end{cases}
$$

7 7

?

^t + *ct,x,* (7)

t+1 ⌦ ⌧ ?

= *d*?

6 6 6 $\overline{6}$ ir *I* cit function via <mark>KKT c</mark> $\frac{1}{2}$ \overline{a} \star Find z^* s.t. $Kz^* + k = 0$ where $z^* = [\tau^*, \dots]$ $\left| \begin{array}{c} F_t & -F_t - I & 0 \\ -I & 0 & \dots \end{array} \right| \left| \begin{array}{c} \lambda_t^* \\ \lambda_t^* \end{array} \right| =$ ງ| ار
ا *t*+1 ? *t*+1 . a a 6 6 $\ddot{}$ *ft*+1 . li $\overline{1}$ the parameters. Since \mathbb{R} is a constrained convex \mathbb{R} argument convex \mathbb{R} argument \mathbb{R} argument convex \mathbb{R} argument convex \mathbb{R} argument convex \mathbb{R} argument convex \mathbb{R} argument conve with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions. Define implicit function via **KKT optimality conditions**

where *Ct,x*, *ct,x*, and *Ft,x* are the first block-rows of *Ct*, *ct*, and *Ft*, respectively. Now that we have

⌧*^t ^t* ⌧*t*+1 *t*+1

Solved with **Riccati recursion**

 \overline{O} PKKT conditions: the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to **the parameters. Backward pass:** implicitly **differentiate** the LOR KKT c with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions. Backward pass: implicitly differentiate the LQR KKT conditions:

$$
\frac{\partial \ell}{\partial C_t} = \frac{1}{2} (d_{\tau_t}^* \otimes \tau_t^* + \tau_t^* \otimes d_{\tau_t}^*)
$$
\n
$$
\frac{\partial \ell}{\partial c_t} = d_{\tau_t}^*
$$
\n
$$
\frac{\partial \ell}{\partial x_{\text{init}}} = d_{\lambda_0}^*
$$
\nwhere\n
$$
K \begin{bmatrix} \vdots \\ d_{\tau_t}^* \\ d_{\lambda_t}^* \\ \vdots \end{bmatrix} = - \begin{bmatrix} \vdots \\ \nabla_{\tau_t}^* \ell \\ 0 \\ \vdots \end{bmatrix}
$$
\n**Just another LQR problem!**

Differentiating non-convex MPC Equation (4) with respect to ⌧ ? *^t* yields ? *t*1 = 0*,* (5) 6 6 $\overline{}$ 6 **n**-conve *Ft*+1 $\overline{1}$ **V V** 7 6 6 4 *t*+1 ? *t*+1 . . . 7 7 5

This talk: differentiate the controller!

Foundations of differentiable optimization and control Unrolling or autograd (gradient descent, differentiable cross-entropy method) Implicit differentiation (convex and non-convex MPC)

cvxpylayers: **Prototyping** differentiable convex optimization and control

Applications of differentiable control Objective mismatch Amortized control

Lavers need to be ers neea to 3 *<u>the time</u> Ft*+1 7 11 7 7 6 6 6 4 θ . . 7 7 5 6 6 4 *ft*+1 7 \blacksquare $\overline{}$ 1:*^T* = LQR*^T* (*x*init; *C, c, F, f*) . Solve (2) **Optimization layers need to be carefully implemented**

$$
D(Gz^* - h)d\lambda + D(\lambda^*)(dGz^* + Gdz - dh) = 0
$$
\n
$$
D(Gz^* - h)d\lambda + D(\lambda^*)(dGz^* + Gdz - dh) = 0
$$
\n
$$
\begin{bmatrix}\nQ & G^T & A^T \\
D(\lambda^*)(dGz^* + Gdz - dh) = 0 \\
A & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\nd^*_{\lambda} \\
d^*_{\lambda}\n\end{bmatrix} = -\begin{bmatrix}\nQ & G^T & A^T \\
0 & 0 & 0\n\end{bmatrix}\n\begin{bmatrix}\nd^*_{\lambda} \\
d^*_{\lambda}\n\end{bmatrix} = -\begin{bmatrix}\n\frac{1}{2}a^* + \frac{1}{2}a^* + \
$$

 A_{invQAT} nvQ_AT
nv0_AT 6 AT = torch.bmm(G, inv *f*
*f f*₁ *f*¹ LU_A_INVŲ.
P A invO *i* P.
P ر
د . . . LU_11 = LU_A_invQ_AT[0] _A_inv0_AT_inv = (P_A_inv0_AT.bmm(L_A_inv0_AT) 1:/colve(*LU_A_invQ_AT)
1:The G_invQ_AT.bmm(U_A_invQ_AT_inv)
1:The G_invQ_AT.transpose(1, 2).lu_solve(*LU_A_invQ_AT) = $LU_12 = U_A_invQ_AT.bmm(T)$ _LU_22 = torch.zeros(nBatch, nineq, nineq).type_as(<mark>Q)</mark>
_LU_data = torch.cat((torch.cat((S_LU_11, S_LU_12), 2),

 $-*n*$

1)
[1]LU_pivots[:, :neq] = LU_A_invQ_AT_

= *d*? ⁰

Why should practitioners care?

Differentiable convex optim

NeurIPS 2019 and officially in CVXPY!

Joint work with A. Agrawal, S. Barratt, S. Boyd, S. Diamond, J. Z. Ko

Useful for **convex control** [problems and subproblems](locuslab.github.io/2019-10-28-cvxpylayers)

Rapidly prototyping optimization layers

Code example: OptNet QP

Now: <10 lines of code

Same speed

Before: 1k lines of code

Hand-implemented and optimized PyTorch GPUcapable batched primal-dual interior point method

$$
x^* = \underset{z}{\text{argmin}} \frac{1}{2} x^T Q x + p^T x
$$

s.t. $Ax = b$
 $Gx \le h$
 $\theta = \{Q, p, A, b, G, h\}$

Write **standard CVXPY** problem **Export** to PyTorch, TensorFlow, JAX

Under the hood: cone program differentiation

Section 7 of my thesis and in Agrawal et al.

 $x^* = \text{argmin } c^\top x$ \mathcal{X} subject to $b - Ax \in \mathcal{K}$

Conic Optimality

Find z^* s.t. $\mathcal{R}(z^*, \theta) = 0$ where $z^* = [x^*, ...]$ and $\theta = \{A, b, c\}$

Implicitly differentiating \mathcal{R} gives $D_{\theta}(z^{\star}) = - \left(D_z \mathcal{R}(z^{\star}) \right)^{-1} D_{\theta} \mathcal{R}(z^{\star})$

This talk: differentiate the controller!

Foundations of differentiable optimization and control Unrolling or autograd (gradient descent, differentiable cross-entropy method) Implicit differentiation (convex and non-convex MPC)

cvxpylayers: **Prototyping** differentiable convex optimization and control

Applications of differentiable control Objective mismatch Amortized control

The Objective Mismatch Problem

Summary: Maximum-likelihood training of dynamics separate from controlling the dynamics Especially problematic with inaccurate models

The **controller** (i.e. policy) **optimizes over the dynamics** Can find **adversarial trajectories** that **appear deceptively "good"**

Differentiable control one potential solution, may be **combined with many others:** advantage weighting, value-gradient weighting, value-aware model learning

Optimizing the task loss is better than SysID

True System: Pendulum environment with noise (damping and a wind force) **Approximate Model**: Pendulum without the noise terms

Optimizing system models with a task loss

Among many others!

Using a Financial Training Criterion Rather than a Prediction Criterion*

Yoshua Bengio[†]

Gnu-RL: A Precocial Reinforcement Learning Solution for Building HVAC Control Using a Differentiable MPC Policy

Bingqing Chen Carnegie Mellon University Pittsburgh, PA, USA bingqinc@andrew.cmu.edu

Zicheng Cai Dell Technologies Austin, TX, USA zicheng.cai@dell.com

Mario Bergés Carnegie Mellon University Pittsburgh, PA, USA mberges@andrew.cmu.edu

Smart "Predict, then Optimize"

Adam N. Elmachtoub Department of Industrial Engineering and Operations Research and Data Science Institute, Columbia University, New York, NY 10027, adam@ieor.columbia.edu

Paul Grigas Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720, pgrigas@berkeley.edu

Task-based End-to-end Model Learning in Stochastic Optimization

Priva L. Donti Dept. of Computer Science Dept. of Engr. & Public Policy Carnegie Mellon University Pittsburgh, PA 15213 pdonti@cs.cmu.edu

Brandon Amos Dept. of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 bamos@cs.cmu.edu

J. Zico Kolter Dept. of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 zkolter@cs.cmu.edu

Learning Convex Optimization Control Policies

Akshay Agrawal Shane Barratt Stephen Boyd 450 Serra Mall, Stanford, CA, 94305

Bartolomeo Stellato* 77 Massachusetts Ave, Cambridge, MA, 02139 AKSHAYKA@CS.STANFORD.EDU SBARRATT@STANFORD.EDU **BOYD@STANFORD.EDU**

STELLATO@MIT.EDU

This talk: differentiate the controller!

Foundations of differentiable optimization and control Unrolling or autograd (gradient descent, differentiable cross-entropy method) Implicit differentiation (convex and non-convex MPC)

cvxpylayers: **Prototyping** differentiable convex optimization and control

Applications of differentiable control Objective mismatch Amortized control

RL policy learning is amortized optimization

Setup: controlling a **continuous MDP** with a **model-free policy** $\pi_{\theta}(x)$

Review: Learning a policy with a **value gradient** amortizes over the Q-value: argmax θ $\mathbb{E}_{p(x)} Q(x, \pi_{\theta}(x))$

 $\pi_{\theta}(x)$ is **fully amortized**: tries to **predict** the max-Q operation **without looking at the Q function!** The **amortization perspective** easily enables us to consider other policies

Amortized control via unrolled gradient descent

The policy's **prediction is adapted** to maximize the Q function for every state **Unrolled gradient descent:** policy has **knowledge it is going to be adapted** Can generalize to **other differentiable optimizers**, e.g., the cross-entropy method

Optimal control sequences share structure

Control optimization problems are **repeatedly solved** for every state Optimal control sequences **do not live in isolation** and **share structure**

Use **differentiable control** to **learn a latent subspace Only search over optimal solutions** rather than the entire space **Amortizes** the original control optimization problem

DCEM learns the solution space structure

Brandon Amos **Brandon Amos Differentiable optimization for control and RL** 32

Closing Thoughts And Future Directions

Differentiable optimization and **control** are **powerful primitives** to use within larger systems **Theoretical** and **engineering** foundations are here Works for **convex** and **non-convex** control Specify and hand-engineer the parts you know, **learn the rest** Can be **propagated through and learned**, just like any layer

Applications in:

Objective mismatch Amortized optimization Safe and robust control Learning state embeddings

[Differentiabl](https://arxiv.org/abs/1703.04529)[e o](Differentiable%20MPC%20for%20End-to-end%20Planning%20and%20Control)ptimi [control and reinf](https://github.com/bamos/thesis)orcem **Brandon Amos**

[Brandon Amos](https://arxiv.org/abs/2008.12775)

[Meta AI NYC, Fundamental AI Re](https://arxiv.org/abs/2202.00665)search (FAIR) mental AI Research (FAIR)

0<u>gith</u>

 \blacktriangleright brandondamos Θ bamos.github.io

Differentiable QPs: OptNet [Amos and Kolter, ICML 2017] $\mathbf{b} = \mathbf{b}$ band on $\mathbf{b} = \mathbf{b}$ and $\mathbf{b} = \mathbf{b}$ **Current Position**

Differentiable task-based stochastic optimization [Donti, Amos, Kolter, I Differentiable MPC for end-to-end planning and control [Amos, Jimene Differentiable Convex Optimization Layers [Agrawal*, Amos*, Barratt*, E **Differentiable optimization-based modeling for ML** [Amos, Ph.D. Thesis **Differentiable Cross-Entropy Method** [Amos and Yarats, ICML 2020] Objective mismatch in model-based reinforcement learning [Lambert, A **On the model-based stochastic value gradient** [Amos, Stanton, Yarats, Tutorial on amortized optimization [Amos, arXiv 2022] **Ph.D. in Computer Science**, *Carnegie Mellon University* (0.00/0.00) 2014 – 2019 <u>UN Layers</u> [Ag
I modeling fol **Ph.D. in Computer Science**, *Carnegie Mellon University* (0.00/0.00) 2014 – 2019

Ph.D. in Computer Science, *Carnegie Mellon University* (0.00/0.00) 2014 – 2019 Collaborators: Akshay Agrawal, Shane Barratt, Byron Boots, Stephen Boyd, Roberto Jimenez, Zico Kolter, Nathan Lambert, Jacob Sacks, Samuel Stanton, Andrew Gordo **B.S. in Computer Science**, *Virginia Tech* (3.99/4.00) 2011 – 2014