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Control is powerful*

2

Setting: deterministic, discrete-time system with a continuous state-action space

Widely deployed over the past century for aviation, robotics, autonomous driving, HVAC
Often for a Markov decision process but doesn’t have to be

The real-world is non-convex, so are our controllers
Convex in some cases and subproblems, e.g., with quadratic cost/linear dynamics (LQR)

NO LEARNING NECESSARY if we know the system — just pure optimization

Notation: 𝜃 are the parameters of the controller (usually of the cost or dynamics)

𝑥!:#⋆ , 𝑢!:#⋆ ∈ argmin
%!:#,'!:#

,
(

𝐶) 𝑥(, 𝑢( s.t. 𝑥! = 𝑥init 𝑥(*! = 𝑓) 𝑥(, 𝑢( 𝑢( ∈ 𝒰

*when properly set up

cost dynamics constraintsinitial state

Full notation: 𝑢!:#⋆ (𝑥init, 𝜃)



Model-free RL and control
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Take the cost to be the (negated) value estimate, no dynamics
Value estimate approximates the model-based objective
Policy learning performs amortized optimization

Viewpoint leads to a model-based to model-free spectrum:
take short-horizon model-based rollouts with a value estimate at the end

𝑥!:#⋆ , 𝑢!:#⋆ ∈ argmin
%!:#,'!:#

,
(

𝐶) 𝑥(, 𝑢( s.t. 𝑥! = 𝑥init 𝑥(*! = 𝑓) 𝑥(, 𝑢( 𝑢( ∈ 𝒰
cost dynamics constraintsinitial state

Full notation: 𝑢!:#⋆ (𝑥init, 𝜃)

𝜋⋆(𝑥) ∈ argmax
'

𝑄)
+(𝑥, 𝑢)

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy



Control may fail for many reasons

Control starts failing us when we can’t describe everything
Impossible to analytically encode every detail of non-trivial systems

Cost and dynamics may be unknown, mis-specified, or inaccurate
Especially difficult in high-dimensional state-action spaces

Learning methods help but are not perfect
system identification, learning dynamics, inverse cost learning
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𝑥!:#⋆ , 𝑢!:#⋆ ∈ argmin
%!:#,'!:#

,
(

𝐶) 𝑥(, 𝑢( s.t. 𝑥! = 𝑥init 𝑥(*! = 𝑓) 𝑥(, 𝑢( 𝑢( ∈ 𝒰
cost dynamics constraintsinitial state

Full notation: 𝑢!:#⋆ (𝑥init, 𝜃)



Controllers don’t live in isolation

𝑥!:#⋆ , 𝑢!:#⋆ ∈ argmin
%!:#,'!:#

,
(

𝐶) 𝑥(, 𝑢( s.t. 𝑥! = 𝑥init 𝑥(*! = 𝑓) 𝑥(, 𝑢( 𝑢( ∈ 𝒰
cost dynamics constraintsinitial state

𝜃

𝜋) 𝑥 ≝ 𝑢!⋆(𝑥, 𝜃)

controller parameters
(design space of cost and model)

solve control optimization problem

𝒥(𝜋))

execute control policy on the system

measure downstream performance of the controller

We can often measure the downstream performance induced by the controller
Idea: optimize (i.e., tune/learn) the parameters for a downstream performance metric
Controller-design loop is not a new idea and has been extensively used over the past century

Full notation: 𝑢!:#⋆ (𝑥init, 𝜃)



∇'𝒥 𝜋'

This talk: differentiate the controller!

differentiable control

We can often measure the downstream performance induced by the controller
Idea: optimize (i.e., tune/learn) the parameters for a downstream performance metric
by differentiating through the control optimization problem

or D% 𝜋%(𝑥)

𝑥!:#⋆ , 𝑢!:#⋆ ∈ argmin
%!:#,'!:#

,
(

𝐶) 𝑥(, 𝑢( s.t. 𝑥! = 𝑥init 𝑥(*! = 𝑓) 𝑥(, 𝑢( 𝑢( ∈ 𝒰
cost dynamics constraintsinitial state

𝜃

𝜋) 𝑥 ≝ 𝑢!⋆(𝑥, 𝜃)

controller parameters
(design space of cost and model)

solve control optimization problem

𝒥(𝜋))

execute control policy on the system

measure downstream performance of the controller

Full notation: 𝑢!:#⋆ (𝑥init, 𝜃)



This talk: differentiate the controller!
Foundations of differentiable optimization and control

Unrolling or autograd (gradient descent, differentiable cross-entropy method)
Implicit differentiation (convex and non-convex MPC)

cvxpylayers: Prototyping differentiable convex optimization and control

Applications of differentiable control
Objective mismatch
Amortized control

Brandon Amos Differentiable optimization for control and RL 7



Each vertical slice is a control problem

Derivatives in RL and control
The policy (or value) gradient

Derivative of value w.r.t. a parameterized policy:

∇)𝔼%$ [𝑄 𝑥(, 𝜋) 𝑥( ]

For policy learning via amortized optimization
𝑄-value can be model-based or model-free
Works for deterministic and stochastic policies

Differentiable control — this talk

Derivative of actions w.r.t. controller parameters:

𝜕𝑢!:#⋆ (𝜃)/𝜕𝜃

Controller induces a model-based policy

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

𝑢⋆ 𝜃

𝜃

𝑢



Implicit differentiation

Idea: Differentiate controller’s optimality conditions

Agnostic of the control algorithm
Ill-defined if controller gives suboptimal solution
Memory and compute efficient: free in some cases

How to differentiate the controller?

Brandon Amos Differentiable optimization for control and RL 9

Unrolling or autograd

Idea: Implement controller, let autodiff do the rest
Like MAML’s unrolled gradient descent

Ideal when unconstrained with a short horizon
Does not require a fixed-point or optimal solution
Instable and resource-intensive for large horizons

Can unroll algorithms beyond gradient descent
The differentiable cross-entropy method

û0
✓ û1

✓
. . . ûK

✓ ⇡̂✓(x) J
. . .

D!𝑢⋆ 𝜃 = −D#𝑔 𝜃, 𝑢⋆ 𝜃 $%D!𝑔 𝜃, 𝑢⋆ 𝜃



Implicit differentiation

Idea: Differentiate controller’s optimality conditions

Agnostic of the control algorithm
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Unrolling or autograd

Idea: Implement controller, let autodiff do the rest
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The Differentiable Cross-Entropy Method (DCEM)

Brandon Amos Differentiable optimization for control and RL 11

The cross-entropy method (CEM) optimizer:
1. Samples from the domain with a Gaussian
2. Updates the Gaussian with the top-k values

Solves challenging non-convex control problems

The differentiable cross-entropy method (DCEM):
Use unrolling to differentiate through CEM using:
1. the reparameterization trick for sampling
2. a differentiable top-k operation (LML)



From the softmax to soft/differentiable top-k
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Constrained softmax, constrained sparsemax, Limited Multi-Label Projection

𝜋,% = argmin
-

−𝑦.𝑥 − 𝐻/(𝑦)

subject to 0 ≤ 𝑦 ≤ 1
1.𝑦 = 𝑘

Has closed-form solution 𝜋&(𝑥) =
'() *

+! '() *!

𝜋,(𝑥) = argmin
-

−𝑦.𝑥 − 𝐻(𝑦)

s.t. 0 ≤ 𝑦 ≤ 1
1.𝑦 = 1

No closed-form solution, can still differentiate

Entropy penalty of the softmax top-k polytope



Implicit differentiation

Idea: Differentiate controller’s optimality conditions

Agnostic of the control algorithm
Ill-defined if controller gives suboptimal solution
Memory and compute efficient: free in some cases
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Unrolling or autograd

Idea: Implement controller, let autodiff do the rest
Like MAML’s unrolled gradient descent

Ideal when unconstrained with a short horizon
Does not require a fixed-point or optimal solution
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D!𝑢⋆ 𝜃 = −D#𝑔 𝜃, 𝑢⋆ 𝜃 $%D!𝑔 𝜃, 𝑢⋆ 𝜃



The Implicit Function Theorem
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Given an implicit function u⋆ 𝜃 : ℝ0 → ℝ1
defined by u⋆ 𝜃 ∈ {𝑢: 𝑔 𝜃, 𝑢 = 0}where 
𝑔 𝜃, 𝑢 :ℝ0×ℝ1 → ℝ

How can we compute D)𝑢⋆ 𝜃 ?

The Implicit Function Theorem gives

D)𝑢⋆ 𝜃 = −D'𝑔 𝜃, 𝑢⋆ 𝜃 2!D)𝑔 𝜃, 𝑢⋆ 𝜃

under mild assumptions

Dini 1877, Dontchev and Rockafellar 2009

D'𝑔(𝜃, 𝑢⋆ 𝜃 )

D)𝑔(𝜃, 𝑢⋆ 𝜃 )

𝑢⋆ 𝜃
Contour of 𝑔 𝜃, 𝑢 defining an implicit function

𝜃

𝑢

Each vertical slice is a control problem



Implicitly differentiating convex LQR control

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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Solved with Riccati recursion



Differentiating non-convex MPC

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?
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the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Backward pass: differentiate the convex approximation, e.g., with:

where
Just an LQR problem!
(in some cases)

Solve with sequential quadratic programming (SQP)
Approximate non-convex argmin with the final convex approximation

𝑥!:#⋆ , 𝑢!:#⋆ ∈ argmin
%!:#,'!:#

,
(

𝐶) 𝑥(, 𝑢( s.t. 𝑥! = 𝑥init 𝑥(*! = 𝑓) 𝑥(, 𝑢( 𝑢( ∈ 𝒰
cost dynamics constraintsinitial state



This talk: differentiate the controller!
Foundations of differentiable optimization and control

Unrolling or autograd (gradient descent, differentiable cross-entropy method)
Implicit differentiation (convex and non-convex MPC)

cvxpylayers: Prototyping differentiable convex optimization and control

Applications of differentiable control
Objective mismatch
Amortized control
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Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)
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where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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Optimization layers need to be carefully implemented



Why should practitioners care?
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Differentiable convex optimization layers
NeurIPS 2019 and officially in CVXPY!
Joint work with A. Agrawal, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter

Useful for convex control problems and subproblems
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locuslab.github.io/2019-10-28-cvxpylayers

locuslab.github.io/2019-10-28-cvxpylayers


Rapidly prototyping optimization layers
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…Inputs Loss
cvxpy optimization layer

!"#$ = argmin
,

-.(!, !")
s.t. ! ∈ ∁.(!")

Backprop

…

Parameters

Variables

Constants

Canonicalized
Cone Program

argmin
7

89:
s.t. ;: ≼= >

Problem

Objective
Constraints

Cone Program
Solution

Original Problem
Solution



Code example: OptNet QP
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𝑥⋆ = argmin
8

1
2
𝑥#𝑄𝑥 + 𝑝.𝑥

s.t. 𝐴𝑥 = 𝑏
𝐺𝑥 ≤ ℎ

𝜃 = {𝑄, 𝑝, 𝐴, 𝑏, 𝐺, ℎ}

Before: 1k lines of code
Hand-implemented and optimized PyTorch GPU-

capable batched primal-dual interior point method

Now: <10 lines of code
Same speed

Write standard CVXPY problem

Export to PyTorch, TensorFlow, JAX



Under the hood: cone program differentiation
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𝑥⋆ = argmin
&

𝑐'𝑥

subject to 𝑏 − 𝐴𝑥 ∈ 𝒦

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0 where 𝑧⋆ = [𝑥⋆, … ] and 𝜃 = {𝐴, 𝑏, 𝑐}

Implicitly differentiating ℛ gives 𝐷\ 𝑧⋆ = − 𝐷]ℛ 𝑧⋆ ^_𝐷\ℛ 𝑧⋆

Section 7 of my thesis and in Agrawal et al.

Conic Optimality



This talk: differentiate the controller!
Foundations of differentiable optimization and control

Unrolling or autograd (gradient descent, differentiable cross-entropy method)
Implicit differentiation (convex and non-convex MPC)

cvxpylayers: Prototyping differentiable convex optimization and control

Applications of differentiable control
Objective mismatch
Amortized control
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The Objective Mismatch Problem

Dynamics !" Policy #"(%) Environment

State Transitions RewardTrajectories

Training: Maximum Likelihood Objective Mismatch

Control Interacts

Responses

Summary: Maximum-likelihood training of dynamics separate from controlling the dynamics
Especially problematic with inaccurate models

The controller (i.e. policy) optimizes over the dynamics
Can find adversarial trajectories that appear deceptively “good”

Differentiable control one potential solution, may be combined with many others:
advantage weighting, value-gradient weighting, value-aware model learning
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Optimizing the task loss is better than SysID
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True System: Pendulum environment with noise (damping and a wind force)
Approximate Model: Pendulum without the noise terms

True Model

Approximate 
Model Class

Best Imitation Loss

Best MSE

~1.8x difference!



Optimizing system models with a task loss
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Among many others!



This talk: differentiate the controller!
Foundations of differentiable optimization and control

Unrolling or autograd (gradient descent, differentiable cross-entropy method)
Implicit differentiation (convex and non-convex MPC)

cvxpylayers: Prototyping differentiable convex optimization and control

Applications of differentiable control
Objective mismatch
Amortized control
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RL policy learning is amortized optimization
Setup: controlling a continuous MDP with a model-free policy 𝜋) 𝑥

Review: Learning a policy with a value gradient amortizes over the 𝑄-value:
argmax

)
𝔼9 % 𝑄(𝑥, 𝜋) 𝑥 )

𝜋)(𝑥) is fully amortized: tries to predict the max-𝑄 operation without looking at the 𝑸 function!
The amortization perspective easily enables us to consider other policies

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

Figure 10: Many policy learning methods amortize optimization problem over the Q-values.
Given a fixed input state x, the policy ⇡✓(x) predicts the maximum value ⇡

?
(x). A stochastic

policy predicts a distribution that minimizes some probabilistic distance to the Q-distribution,
such as the expected value or KL.

6.4.5 RLQP by Ichnowski et al. (2021)

RLQP (Ichnowski et al., 2021) amortizes solutions to constrained convex quadratic optimiza-
tion problems of the form

x
?
(�) 2 argmin

x

1

2
x
>
Px+ q

>
x subject to l  Ax  u, (57)

where x 2 R
n is the domain of the optimization problem and � = {P, q, l, A, u} is the context

or parameterization (from a larger space � 2 �) of the optimization problem with P � 0

(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
the core of OSQP uses updates that first solve the system


P + �I A

>

A �diag(⇢
t
)
�1

� 
x
t+1

v
t+1

�
=
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�x
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z
t � diag(⇢

t
)
�1

y
t

�
(58)

and then updates
z̃
t+1

:= z
t
+ diag(⇢

t
)
�1

(v
t+1 � y

t
)

z
t+1

:= ⇧
�
z̃
t+1

+ diag(⇢
t
)
�1

y
t
�

y
t+1

:= x
t
+ diag(⇢)

�
z̃
t+1 � zt+ 1

�
,

(59)

where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s

t
, ⇢

t
).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.
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policy predicts a distribution that minimizes some probabilistic distance to the Q-distribution,
such as the expected value or KL.
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(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
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+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s
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).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.
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Amortized control via unrolled gradient descent
The policy’s prediction is adapted to maximize the 𝑄 function for every state
Unrolled gradient descent: policy has knowledge it is going to be adapted
Can generalize to other differentiable optimizers, e.g., the cross-entropy method



Optimal control sequences share structure
Control optimization problems are repeatedly solved for every state
Optimal control sequences do not live in isolation and share structure

Use differentiable control to learn a latent subspace
Only search over optimal solutions rather than the entire space
Amortizes the original control optimization problem

Optimal controls over time — force on the cartpole

Time

Full control sequence space

Subspace of
optimal solutions

Cartpole videos



DCEM learns the solution space structure
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Full control sequence space

Subspace of
optimal solutions

𝑢⋆ = argmin
7∈ 9,: !

𝑓 𝑢

Latent space
of optimal solutions



Closing Thoughts And Future Directions
Differentiable optimization and control are powerful primitives to use within larger systems

Theoretical and engineering foundations are here
Works for convex and non-convex control
Specify and hand-engineer the parts you know, learn the rest
Can be propagated through and learned, just like any layer

Applications in:
Objective mismatch 
Amortized optimization
Safe and robust control
Learning state embeddings
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Differentiable QPs: OptNet [Amos and Kolter, ICML 2017]
Differentiable task-based stochastic optimization [Donti, Amos, Kolter, NeurIPS 2017]
Differentiable MPC for end-to-end planning and control [Amos, Jimenez, Sacks, Boots, Kolter, NeurIPS 2018]
Differentiable Convex Optimization Layers [Agrawal*, Amos*, Barratt*, Boyd*, Diamond*, Kolter*, NeurIPS 2019]
Differentiable optimization-based modeling for ML [Amos, Ph.D. Thesis 2019]
Differentiable Cross-Entropy Method [Amos and Yarats, ICML 2020]
Objective mismatch in model-based reinforcement learning [Lambert, Amos, Yadan, Calandra, L4DC 2020]
On the model-based stochastic value gradient [Amos, Stanton, Yarats, Wilson, L4DC 2021]
Tutorial on amortized optimization [Amos, arXiv 2022]
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