
Differentiable optimization-based
modeling for machine learning

Brandon Amos • Meta AI (FAIR)

Joint with Akshay Agrawal, Shane Barratt, Byron Boots, Stephen Boyd, Roberto Calandra, Steven Diamond,
Priya Donti, Ivan Jimenez, Zico Kolter, Nathan Lambert, Jacob Sacks, Omry Yadan, and Denis Yarats

Can we throw big neural networks at every problem?

Brandon Amos Optimization-Based Modeling for Machine Learning 2

(Maybe) Neural networks are soaring in vision, RL, and language

A lot of data Model Predictions Loss

AGI: A pile of linear algebra?

Optimization-based modeling for machine learning

Adds domain knowledge and hard constraints to your modeling pipeline
Integrates and trains nicely with your other end-to-end modeling components
Applications in RL, control, meta-learning, game theory, optimal transport

Brandon Amos Optimization-Based Modeling for Machine Learning 3

Optimization Layer

A lot of data Model Predictions Loss

𝑧!"# = 	 argmin
$

	 𝑓% 𝑧, 𝑧!
	 subject	to	 𝑧 ∈ 𝐶% 𝑧, 𝑧!

… …

Why optimization-based modeling?

Brandon Amos Optimization-Based Modeling for Machine Learning 4

Non-trivial reasoning operations are fundamentally optimization problems
Why unnecessarily approximate them? (e.g. with a neural network)
Explicitly model the optimization components and learn the rest (when possible)

Optimization layers model hard constraints

Brandon Amos Optimization-Based Modeling for Machine Learning 5

Constraint Predictions During TrainingTrue Constraint (Unknown to the model)

Example 1 Example 2

Example 3 Example 4

Example 1 Example 2

Example 3 Example 4

This talk: differentiable optimization-based models

Standard operations as convex optimization layers — warmup

Differentiable optimization theory and practice — core

Differentiable control and objective mismatch — focus application

Brandon Amos Optimization-Based Modeling for Machine Learning 6

Convex optimization is expressive
The argmin of a convex optimization problem is non-convex and expressive
Standard non-linearities to be seen as solutions to convex optimization problems
We’ll start simple for intuition and motivation to generalize beyond these

Brandon Amos Optimization-Based Modeling for Machine Learning 7

𝑦⋆ 𝑥 = argmin
7

	 𝑓 𝑦; 𝑥 	subject	to	 𝑦 ∈ 𝐶 𝑥

The ReLU is a convex optimization layer

Brandon Amos Optimization-Based Modeling for Machine Learning 8

ReLU(𝑥) = argmin
7

	 𝑦 − 𝑥 8
8

	 s.t.	 𝑦 ≥ 0

ReLU(𝑥) = max{0, 𝑥}

Proof: Comes from first-order optimality (section 2 of my thesis)

The sigmoid is a convex optimization layer

Brandon Amos Optimization-Based Modeling for Machine Learning 9

𝜎(𝑥) =
1

1 + exp	{−𝑥}

𝜎(𝑥) = 	argmin
7

	 −𝑦9𝑥 − 𝐻:(𝑦)

	 s.t.	 0 ≤ 𝑦 ≤ 1

Proof: Comes from first-order optimality (section 2 of my thesis)

The soft-argmax is a convex optimization layer

Brandon Amos Optimization-Based Modeling for Machine Learning 10

𝜋;(𝑥/𝜏) =
exp{ 𝑥 /𝜏}
Σ< exp{ 𝑥</𝜏}

𝜋;(𝑥/𝜏) = 	argmax
7

	 𝑦9𝑥 + 𝜏𝐻(𝑦)

	 s.t.	 0 ≤ 𝑦 ≤ 1
	 19𝑦 = 1

Contours of the entropy 𝐻(𝑦) over the simplex

Proof: Comes from first-order optimality (section 2 of my thesis)

(approaches the argmax when 𝜏 → 0)

How can we generalize this?

Brandon Amos Optimization-Based Modeling for Machine Learning 11

𝑧<=> 𝑧< = 	argmin
?

	 𝑓@ 𝑧, 𝑧< 	subject	to	 𝑧 ∈ 𝐶@ 𝑧, 𝑧<

Derivatives and backpropagation
For learning, we differentiate or backpropagate through these layers — differentiable optimization

Easy if the optimization problem has an explicit, closed-form solution (often standard differentiation)

Otherwise, need to use implicit differentiation, which is also used for sensitivity analysis

This talk: differentiable optimization-based models

Standard operations as convex optimization layers — warmup

Differentiable optimization theory and practice — core

Differentiable control and objective mismatch — focus application

Brandon Amos Optimization-Based Modeling for Machine Learning 12

The Implicit Function Theorem

Brandon Amos Optimization-Based Modeling for Machine Learning 13

Given an implicit function 𝑓 𝑥 :	ℝ& → ℝ'
defined by 𝑓 𝑥 ∈ {𝑦: 𝑔 𝑥, 𝑦 = 0} where
𝑔 𝑥, 𝑦 :ℝ&×ℝ' → ℝ

How can we compute D(𝑓 𝑥 ?

The Implicit Function Theorem gives

D(𝑓 𝑥 = −D)𝑔 𝑥, 𝑓 𝑥 *#D(𝑔 𝑥, 𝑓 𝑥

under mild assumptions

[Dini 1877, Dontchev and Rockafellar 2009]

D)𝑔(𝑥, 𝑓 𝑥)

D(𝑔(𝑥, 𝑓 𝑥)

𝑓 𝑥
Contour of 𝑔 𝑥, 𝑦 defining an implicit function

Implicitly differentiating a convex quadratic program

Brandon Amos Optimization-Based Modeling for Machine Learning 14

𝑥⋆ = 	 argmin
&

1
2 𝑥

'𝑄𝑥 + 𝑝'𝑥

	 subject	to	 𝐴𝑥 = 𝑏	 𝐺𝑥 ≤ ℎ

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0 where 𝑧⋆ = [𝑥⋆, …] and 𝜃 = 𝑄, 𝑝, 𝐴, 𝑏, 𝐺, ℎ

Implicitly differentiating ℛ gives 𝐷@ 𝑧⋆ = − 𝐷?ℛ 𝑧⋆
O>
𝐷@ℛ 𝑧⋆

Original problem considered in OptNet

KKT Optimality

Background: cones and conic programs

Zero: 0
Free: ℝ&
Non-negative: ℝ"&
Second-order (Lorentz): 𝑡, 𝑥 ∈ ℝ"×ℝ& 𝑥 + ≤ 𝑡}
Semidefinite: 𝕊"&
Exponential: 𝑥, 𝑦, 𝑧 ∈ ℝ, 𝑦𝑒(/) ≤ 𝑧, 𝑦 > 0} ∪ ℝ*× 0 ×ℝ"

Cartesian Products: 𝒦 = 𝒦#×⋯×𝒦.

Brandon Amos Optimization-Based Modeling for Machine Learning 15

𝑥⋆ = 	 argmin
&

	 𝑐'𝑥

	 subject	to	 𝑏 − 𝐴𝑥 ∈ 𝒦

Most convex optimization problems can be transformed into a (convex) conic program

• The standard Euclidean projection onto the non-negative orthant R
n
+ is defined by

⇡(x) 2 argmin
y

1

2
kx� yk22 s. t. y � 0, (20)

and has a closed-form solution given the ReLU, i.e. ⇡(x) := max{0, x}.

• The interior of the unit hypercube [0, 1]
n can be projected onto with the entropy-

regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �Hb(y), (21)

where

Hb(y) =:=

X

i

yi log yi + (1� yi) log(1� yi)

!
(22)

is the binary entropy function. Eq. (21) has a closed-form solution given by the sigmoid
or logistic function, i.e. ⇡(x) := (1 + e

�x
)
�1.

• The interior of the (n� 1)-simplex defined by

�n�1 := {p 2 R
n | 1>p = 1 and p � 0} (23)

can be projected onto with the entropy-regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �H(y) s. t. 1

>
y = 1 (24)

where H(y) := �
P

i
yi log yi is the entropy function. Eq. (24) has a closed-form

solution given by the softargmax, i.e. ⇡(x)j = e
xj/
P

i
e
xi , which is historically referred

to as the softmax.

Going beyond these, we next cover differentiable projections onto convex cones, noting that
they can also be softened or regularized to help with continuity when composed with learning
and amortization methods. Ali et al. (2017); Busseti et al. (2019) discuss differentiating the
standard Euclidean projections onto these, including:

• The second-order, Lorentz, or ice cream cone defined by
Ksoc := {(x, y) 2 R

m�1 ⇥ R : kxk2 y}. The standard
Euclidean projection is given in closed form as

⇡(x, y) :=

8
><

>:

0 kxk2 �y

(x, y) kxk2 y

1
2(1 +

y

kxk2)(x, kxk2) otherwise.
(25)

and can be explicitly differentiated.

• The positive semidefinite cone Sm
+ of the space of m⇥m positive semidefinite matrices.

The Euclidean projection is obtained in closed-form by projecting the eigenvalues to
be non-negative with ⇡(X) :=

P
i
max{�i, 0}qiq>i , where the eigenvalue decomposition

of X is given by X =
P

i
�iqiq

>
i

. The derivative can be computed by differentiating
through the eigenvalue decomposition and projection of the eigenvalues.

18

Implicitly differentiating a conic program

Brandon Amos Optimization-Based Modeling for Machine Learning 16

𝑥⋆ = 	 argmin
&

	 𝑐'𝑥

	 subject	to	 𝑏 − 𝐴𝑥 ∈ 𝒦

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0 where 𝑧⋆ = [𝑥⋆, …] and 𝜃 = {𝐴, 𝑏, 𝑐}

Implicitly differentiating ℛ gives 𝐷@ 𝑧⋆ = − 𝐷?ℛ 𝑧⋆ O>𝐷@ℛ 𝑧⋆

Section 7 of my thesis

Conic Optimality

Applications of differentiable convex optimization
Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)

Meta-learning (differentiable SVMs and optimizers, implicit MAML)

Energy-based learning and structured prediction (differentiable inference with, e.g., ICNNs)

Amortized optimization (as models or for enforcing constraints via differentiable projections)

Brandon Amos Optimization-Based Modeling for Machine Learning 17

From the softmax to soft/differentiable top-k

Brandon Amos Optimization-Based Modeling for Machine Learning 18

Constrained softmax, constrained sparsemax, Limited Multi-Label Projection

𝑦⋆ = 	 argmin
)

	 −𝑦0𝑥 − 𝐻1(𝑦)

	 subject	to	 0 ≤ 𝑦 ≤ 1
	 10𝑦 = 𝑘

𝑦⋆ = 	 argmin
)

	 −𝑦0𝑥 − 𝐻(𝑦)

	 subject	to	 0 ≤ 𝑦 ≤ 1
	 10𝑦 = 1

Contours of the entropy penalties

Differentiable permutations, sorting and SVMs
Differentiable permutations and sorting (Gumbel-Sinkhorn)
Projection onto the Birkhoff polytope ℬ2:

Brandon Amos Optimization-Based Modeling for Machine Learning 19

𝑤⋆ = argmin
3

𝑤 + + 𝐶^
!

max{0, 1 − 𝑦!𝑓 𝑥! }

ℬ2 = 𝑋:𝑋 ≥ 0, Σ!𝑋!4 = Σ4𝑋!4 = 1

Differentiable SVMs (MetaOptNet)
Differentiate the decision boundary w.r.t. the dataset

𝑆
𝑋
𝜏 = argmax

5∈ℬ!
𝑃, 𝑋 8+𝜏𝐻 𝑃

Brandon Amos Optimization-Based Modeling for Machine Learning 20

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �

�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �

�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �

�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Optimization layers need to be carefully implemented

Why should practitioners care?

Brandon Amos Optimization-Based Modeling for Machine Learning 21

Differentiable convex optimization layers

Brandon Amos Optimization-Based Modeling for Machine Learning 22

NeurIPS 2019 and officially in CVXPY!
Joint work with A. Agrawal, S. Barratt, S. Boyd, S. Diamond, J. Z. Kolter

locuslab.github.io/2019-10-28-cvxpylayers

A new way of rapidly prototyping optimization layers

Brandon Amos Optimization-Based Modeling for Machine Learning 23

…Inputs Loss
cvxpy optimization layer

!"#$ = argmin
,

-.(!, !")
s.t. ! ∈ ∁.(!")

Backprop

…

Parameters

Variables

Constants

Canonicalized
Cone Program

argmin
7

89:
s.t. ;: ≼= >

Problem

Objective
Constraints

Cone Program
Solution

Original Problem
Solution

Code example: OptNet QP

Brandon Amos Optimization-Based Modeling for Machine Learning 24

Before: 1k lines of code Now: 10 lines of code

𝑧!"# = 	 argmin
$

1
2
𝑧%𝑄 𝑧! 𝑧 + 𝑞 𝑧! %𝑧

	 subject	to	 𝐴 𝑧! 𝑧 = 𝑏 𝑧!
	 𝐺 𝑧! 𝑧 ≤ ℎ 𝑧!

Parameters/Submodules :
𝑄, 𝑞, 𝐴, 𝑏, 𝐺, ℎ

Code example: the sigmoid

Brandon Amos Optimization-Based Modeling for Machine Learning 25

𝑦 =
1

1 + 𝑒*(
𝑦⋆ = 	 argmin

)
	 −𝑦0𝑥 − 𝐻1(𝑦)

	 subject	to	 0 ≤ 𝑦 ≤ 1

Code example: constraint modeling

Brandon Amos Optimization-Based Modeling for Machine Learning 26

Connections to sensitivity and perturbation analysis
Adjoint derivatives for optimization problems have been studied for decades
We have focused on uses for learning, but also widely used for sensitivity analysis

Logistic regression example
Find optimal decision boundary:

Use derivatives for sensitivity to the data points:

How much the data impacts the decision boundary

Brandon Amos Optimization-Based Modeling for Machine Learning 27

𝜃⋆ ∈ argmax
"

+
#

log 𝑝" 𝑦# 	 𝑥#)

𝜕𝜃⋆

𝜕𝑥#

How do we handle non-convex optimization layers?

Brandon Amos Optimization-Based Modeling for Machine Learning 28

A lot of data Model Predictions Loss

𝑧!"# = 	 argmin
$

	 𝑓% 𝑧, 𝑧!
	 subject	to	 𝑧 ∈ 𝐶% 𝑧, 𝑧!

If non-convex:
1. Implicitly differentiate the fixed-point of a non-convex solver
 - Form a locally convex approximation to the problem
2. Unroll gradient steps ∇$𝑓 if unconstrained (MAML)
3. Unroll steps of another optimizer (differentiable cross-entropy method)

Optimization Layer… …

This talk: differentiable optimization-based models

Standard operations as convex optimization layers — warmup

Differentiable optimization theory and practice — core

Differentiable control and objective mismatch — focus application

Brandon Amos Optimization-Based Modeling for Machine Learning 29

Should RL policies have a system dynamics model or not?

Model-free RL
More general, doesn’t make as many assumptions about the world
Rife with poor data efficiency and learning stability issues

Model-based RL (or control)
A useful prior on the world if it lies within your set of assumptions

Brandon Amos Optimization-Based Modeling for Machine Learning 30

State Action

Policy Neural
Network(s)

Future
Plan

System
Dynamics

Model Predictive Control

Brandon Amos Optimization-Based Modeling for Machine Learning 31

Known or learned from data

Why model predictive control?

Brandon Amos Optimization-Based Modeling for Machine Learning 32

Powerfully deployed in robotic systems, autonomous vehicles, aerospace settings, and beyond

Model Predictive Control
A	pure	planning	problem	given	(potentially	non-convex)	cost	and	dynamics:

Brandon Amos Optimization-Based Modeling for Machine Learning 33

𝜏#::⋆ = argmin
;":$

	 ^
<

𝐶%(𝜏<)

	 subject	to	 𝑥# = 𝑥init
	 𝑥<"# = 𝑓% 𝜏<
	 𝑢 ≤ 𝑢 ≤ 𝑢

Cost

Dynamics

where	𝜏$ = {𝑥$, 𝑢$}

Model Predictive Control with SQP
The standard way of solving MPC is to use sequential quadratic programming (SQP)
Form approximations to the cost and dynamics around the current iterate
Repeat until a fixed point is reached, then implicitly differentiate the fixed point

Brandon Amos Optimization-Based Modeling for Machine Learning 34

Challenge: complex systems are difficult to model
Modeling complex systems in the world is challenging
Often resort to data-driven approaches and learning to estimate unknown parts

Brandon Amos Optimization-Based Modeling for Machine Learning 35

𝜏#::⋆ = argmin
;":$

	 ^
<

𝐶%(𝜏<)

	 subject	to	 𝑥# = 𝑥init
	 𝑥<"# = 𝑓% 𝜏<
	 𝑢 ≤ 𝑢 ≤ 𝑢

Cost

Dynamics

where	𝜏$ = {𝑥$, 𝑢$}

Standard model-based control training pipeline

Brandon Amos Optimization-Based Modeling for Machine Learning 36

Dynamics 𝑓< Policy 𝜋<(𝑥) Environment

State Transitions RewardTrajectories

Training: Maximum Likelihood

Control Interacts

Responses

Standard model-based control training pipeline

Brandon Amos Optimization-Based Modeling for Machine Learning 37

Dynamics 𝑓< Policy 𝜋<(𝑥) Environment

State Transitions RewardTrajectories

Training: Maximum Likelihood

Control Interacts

ResponsesObjective Mismatch

objective mismatch: dynamics unaware of reward
Similar to problems arising in predict then optimize settings

Potential solutions to objective mismatch

1. Re-weight states to focus on high-value or high-advantage regions

2. This talk: use differentiable optimization to connect the dynamics and reward signal

Brandon Amos Optimization-Based Modeling for Machine Learning 38

Dynamics !" Policy #"(%) Environment

State Transitions RewardTrajectories

Training: Maximum Likelihood Objective Mismatch

Control Interacts

Responses

Differentiable Model Predictive Control

Brandon Amos Optimization-Based Modeling for Machine Learning 39

Layer z%… MPC Layer …

A lot of data Model Predictions Loss

What can we do with this?
Augment neural network policies in model-free algorithms with MPC policies
Replace the unrolled controllers in other settings (hindsight plan, universal planning networks)
Fight objective mismatch by end-to-end learning dynamics
The cost can also be end-to-end learned! No longer need to hard-code in values

Differentiating LQR control is easy

Brandon Amos Optimization-Based Modeling for Machine Learning 40

Riccati recursion solves the KKT system:

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �

�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �

�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �

�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are

@`

@Ct
=

1

2

�
d
?
⌧t ⌦ ⌧

?
t + ⌧

?
t ⌦ d

?
⌧t

� @`

@ct
= d

?
⌧t

@`

@xinit
= d

?
�0

@`

@Ft
= d

?
�t+1

⌦ ⌧
?
t + �

?
t+1 ⌦ d

?
⌧t

@`

@ft
= d

?
�t

(8)

where ⌦ is the outer product operator, and d
?
⌧ and d

?
� are obtained by solving the linear system

K

2

6664

...
d
?
⌧t

d
?
�t

...

3

7775
= �

2

6664

...
r⌧?

t
`

0
...

3

7775
. (9)

We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?

t
` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.

4

Backward pass: implicitly differentiate the LQR KKT conditions:

where

Just another LQR problem!

Definition: Linear quadratic regulator

min
;={(%,@%}

	^
<

𝜏<:𝐶<𝜏< + 𝑐<𝜏<	

	 s.t.	 𝑥<"# = 𝐹<𝜏< + 𝑓<	 𝑥B = 𝑥init

Differentiating LQR control is easy

Brandon Amos Optimization-Based Modeling for Machine Learning 41

Just another LQR problem!

Objective Mismatch: Optimizing the task loss is often
better than SysID in the unrealizable case

Brandon Amos Optimization-Based Modeling for Machine Learning 42

True system: pendulum with noise (damping and a wind force)
Approximate model: pendulum without the noise terms

True Model

Approximate
Model ClassBest Imitation Loss

Best MSE

~1.8x difference!

Another control optimizer: the cross-entropy method

Brandon Amos Optimization-Based Modeling for Machine Learning 43

Iterative sampling-based optimizer that:
1. Samples from the domain
2. Observes the function’s values
3. Updates the sampling distribution

Powerful optimizer for control and model-based RL

CEM iteratively refining Gaussians

The Differentiable Cross-Entropy Method (DCEM)

Brandon Amos Optimization-Based Modeling for Machine Learning 44

Differentiate backwards through the sequence of samples
 Using differentiable top-k (LML) and reparameterization

Useful when a fixed point is hard to find, or when unrolling
gradient descent hits a local optimum

A differentiable controller in the RL setting

CEM iteratively refining Gaussians

DCEM can learn the solution space structure

Brandon Amos Optimization-Based Modeling for Machine Learning 45

Full Domain

Space of
optimal solutions

𝑥⋆ = argmin
?∈ @,A &

	 𝑓 𝑥

Latent space
of optimal solutions

Brandon Amos Optimization-Based Modeling for Machine Learning 46

sites.google.com/view/diff-cross-entropy-method

DCEM fine-tunes highly non-convex controllers

https://sites.google.com/view/diff-cross-entropy-method/home

Closing thoughts and future directions
Differentiable optimization is a powerful primitive to use within larger systems
• Theoretical and engineering foundations are here
• Can be propagated through and learned, just like any layer
• Provides a perspective to analyze existing models and layers

Applicable where optimization expresses non-trivial modeling operations including game
theory, geometry, RL/control, meta-learning, energy-based learning, structured prediction

Extendable far beyond the (mostly convex) continuous Euclidean settings considered here

Brandon Amos Optimization-Based Modeling for Machine Learning 47

Differentiable optimization-based
modeling for machine learning

Brandon Amos • Meta AI (FAIR)

Joint with Akshay Agrawal, Shane Barratt, Byron Boots, Stephen Boyd, Roberto Calandra, Steven Diamond,
Priya Donti, Ivan Jimenez, Zico Kolter, Nathan Lambert, Jacob Sacks, Omry Yadan, and Denis Yarats

Differentiable QPs: OptNet [ICML 2017]
Differentiable Stochastic Opt: Task-based Model Learning [NeurIPS 2017]
Differentiable MPC for End-to-end Planning and Control [NeurIPS 2018]
Differentiable Convex Optimization Layers [NeurIPS 2019]
Differentiable Optimization-Based Modeling for ML [Ph.D. Thesis 2019]
Differentiable Top-k and Multi-Label Projection [arXiv 2019]
Generalized Inner Loop Meta-Learning [arXiv 2019]
Objective Mismatch in Model-based Reinforcement Learning [L4DC 2020]
Differentiable Cross-Entropy Method [ICML 2020]
Differentiable Combinatorial Optimization: CombOptNet [ICML 2021]

https://arxiv.org/abs/1703.00443
http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization
Differentiable%20MPC%20for%20End-to-end%20Planning%20and%20Control
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers
https://github.com/bamos/thesis
https://arxiv.org/abs/1906.08707
https://arxiv.org/abs/1910.01727
https://arxiv.org/abs/2002.04523
https://arxiv.org/abs/1909.12830
https://arxiv.org/abs/2105.02343

