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Optimization is crucial technology

Optimization is a modeling and decision-making paradigm and encodes reasoning operations
Finds the best way to interact with a representation of the world

Focus: parametric optimization problems that are repeatedly solved

optimal solution objecti\I/e context (or parameterization)
| |
* . .
y*(x) € argmin f (y; x)
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optimization variable constraints

vertical slices are optimization problems
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Breakthroughs enabled by optimization include

1. controlling systems (robotic, autonomous, mechanical, and multi-agent)

optimal solution objecti\I/e context (or parameterization)
I I
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y*(x) € argmin f (y; x)
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optimization variable constraints
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Breakthroughs enabled by optimization include

controlling systems (robotic, autonomous, mechanical, and multi-agent)

making operational decisions based on future predictions

efficiently transporting or matching resources, information, and measures

allocating budgets and portfolios

designing materials, molecules, and other structures

solving inverse problems (to infer underlying hidden costs, incentives, geometries, terrains)
parameter learning of predictive and statistical models
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optimal solution objective context (or parameterization)
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Repeatedly solving optimization problems

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
On the model-based stochastic value gradient for continuous reinforcement learning. Amos et al., L4DC 2021.
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m(x) = argmax Q (x, u)
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This talk: amortized optimization

Design decisions

Modeling paradigms for yg (fully-amortized and semi-amortized models)
Learning paradigms for L (objective-based and regression-based)

Applications

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAESs)
Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)
Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport)
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Amortization: approximate the solution map

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

A fast amortization model y4 can be 25,000 times faster than solving y* from scratch for VAEs

Amortization model y4(x) tries to approximate y*(x) w
Example: A neural network mapping from x to the solution y*

Yo(T)

(z)

Loss L measures how well y fits y* and optimized with mein LBg) Y
Regression: L(Jg) = [Ep(x) |70 (x) — y*(x)”%

Objective: L(Tg) = Epin f (o (X)) ‘
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Modeling paradigms for y,

How to best-predict the solution?
Fully-amortized models: Map from the context x to the solution without accessing the objective f

Example: Neural network mapping from x to the solution
Most of our applications will focus on these

Semi-amortized models: Internally access the objective f
Example: Gradient-based meta-learning models such as MAML

gy — 95 — - — Up = Je(2)
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Learning paradigms for L

What should the model y4 optimize for?

Regression-based Objective-based:
Lreg(f’e) = IIEp(x) |79 (x) — y*(x)“% Lobj (Vo) = IIEp(x) f(@e(x); x)

Does not consider f(y;z)

Uses global information with y*(z)
Expensive to compute y*(x)

Does not compute V,, f(y; x)

Hard to learn non-unique y*(x)

Uses objective information of f(y;x)
Can get stuck in local optima of f(y;x)
Faster, does not require y*(x)

Often requires computing V,, f(y; x)
Easily learns non-unique y*(x)
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This talk: amortized optimization

Design decisions

Modeling paradigms for yg (fully-amortized and semi-amortized models)
Learning paradigms for L (objective-based and regression-based)

Applications

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)
Optimal transport (slicing, conjugation, Meta Optimal Transport)
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Iterative Amortized Policy Optimization

Joseph Marino* Alexandre Piché
California Institute of Technology Mila, Université de Montréal

Alessandro Davide Ialongo Yisong Yue

University of Cambridge California Institute of Technology 333

Abstract
332

Policy networks are a central feature of deep reinforcement learning (RL) algo-
rithms for continuous control, enabling the estimation and sampling of high-value _ s
actions. From the variational inference perspective on RL, policy networks, when ’ Direct Pohcy Network
used with entropy or KL regularization, are a form of amortized optimization, opti- . :

mizing network parameters rather than the policy distributions directly. However, Iterative POhCy Network
d.irec"t ar‘nortiz.ed‘ glappings can yield suboptirpal poljcy esFimates anfi restricted Optima.l Estimate
distributions, limiting performance and exploration. Given this perspective, we con-
sider the more flexible class of iterative amortized optimizers. We demonstrate that —1.0

the resulting technique, iterative amortized policy optimization, yields performance —1.0 —0.5 0.0 0.5
improvements over direct amortization on benchmark continuous control tasks. tanh ( [1,1)
Accompanying code: github.com/joelouismarino/variational_rl.

331

330
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Hanabi scores

Variant Bluebrint SPARTA SPARTA RL Search RL Search
. . p (Single) (Multi) (Single) (Multi)
Scalable Online Planning
. . . . . Normal 2423 +£0.04 2457+0.03 2461 +£0.02 24.59+0.02 24.62+0.03
via Reinforcement Learning Fine-Tuning 63.20% 73.90% 75.46% 75.05% 75.93%
2 Hints 2299 +0.04 23.60+0.03 23.67+0.03 23.61 +0.03 23.76 + 0.04
17.50% 25.85% 26.87% 27.85% 31.01%
Arnaud Fickinger* Hengyuan Hu* Brandon Amos
Facebook Al Research Facebook Al Research Facebook Al Research
arnaudfickinger@fb.com hengyuan@fb.com bda@fb.com M S. Pa cman scores
Additional Samples 0 3.10° 4.10° 8.10°
Stuart Russell Noam Brown
UC Berkeley Facebook Al Research RL Fine-Tuning 1880 3940 4580 5510
russell@berkeley.edu noambrown@fb.com
PPO Training 1880 1900 1900 1920
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC) | Full controlsequence space

Amortize by learning a latent subspace of optimal solutions

Only search over optimal solutions rather than the entire space
The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

Subspace of
optimal solutions

Cartpole videos Optimal controls over time — force on the cartpole
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Amortize by learning a latent subspace of optimal solutions
The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

CEM over the full action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples
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Full control sequence space

Controls

Timestep Timestep Timestep Timestep

DCEM over the latent action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

Subspace of
optimal solutions

Controls

Timestep Timestep Timestep

Latent space
of optimal solutions

Latent Dim 2

Latent Dim 1 Latent Dim 1 Latent Dim 1 Latent Dim 1
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Given a VAE model p(x) = log fzp(xlz)p(x), encoding amortizes the optimization problem

A*(x) = argmax ELBO(4; x) where ELBO(A; x) := Eq(,2)log p(x]|2)] — Dk, (q(x; DIp(2)).
A
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VAE amortization is conceptually the same as RL

Value gradient amortization in RL VAE posterior amortization
argglax Epx) Q(x,mg(x)) argmax [Ep ) ELBO(Ag (x); x)
6
| S A
B — RYcs a—
Uu U

images from dataset

x: states from system

ry T2 I3 Ty I5 Te X7 X8 T9 T10 T11 T12
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAES)

Meta-learning (HyperNets, MAML)

Given a task 7', amortize the computation of the optimal parameters of a model

0*(T) = argmax £+(0)
6
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAES)
Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Given a dictionary W, of basis vectors and input x, a sparse code is recovered with

y*(x) € argmin|lx — Wyyll5 + allyll;
y

Predictive sparse decomposition (PSD) and Learned ISTA (LISTA) amortize this problem
Kavukcuoglu, Ranzato, and LeCun, 2010. Gregor and LeCun, 2010.
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

L . 1
Finding fixed points y = g(y) x* = argmin ExTQx +pTx
X

subjectto b —Ax € K

lKKT conditions

Findz*s.t. R(z*,68) =0
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
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Optimal transport (slicing, conjugation, Meta

T*(a, ) € argmin E, _q[lx — T(x)|I3
TeC(a,B)

Meta Optimal Transport. Amos et al., ICML 2023.
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAES) & & L 3 A
Meta-learning (HyperNets, MAML) o W - @ &
Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, I

Optimal transport (slicing, conjugation, Meta Optimal Transport)

fe) = —inff(x) —x'y

On amortizing convex conjugates for optimal transport. Amos, ICLR 2023
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Applications of amortized optimization

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport)

Foundations and Trends® in Machine Learnin

Tutorial on amortized optimization for learning to optimize

over continuous domains

Brandon Amos BDAQ@FB.COM
Facebook AI Research, Meta
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Future directions and limitations

Amortized optimization is established and budding with new methods and applications

Possible to expand far beyond unconstrained continuous Euclidean optimization settings:
1. New applications and settings for semi-amortized modeling

2. Constrained domains (e.g., with differentiable projections)

3. Discrete optimization settings (e.g., with differentiable discrete optimization)
4. Non-Euclidean settings (e.g., with Riemannian optimization)

Potential limitations:
1. Difficult in out-of-domain settings when the contexts significantly change
2. Generally difficult to ensure stability or convergence

3. Typically does not solve previously intractable problems
4. Can be difficult to obtain high-accuracy solutions without fine-tuning/semi-amortization
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The differentiable cross-entropy method [Amos and Yarats, ICML 2020]

Neural Potts Model [Sercu®, Verkuil®, et al., MLCB 2020

On the model-based stochastic value gradient [Amos, Stanton, Yarats, Wilson, L4DC 2021
= Online planning via RL fine-tuning [Fickinger®, Hu*, et al., NeurlPS 2021]

Neural fixed-point acceleration [Venkataraman and Amos, ICML AutoML Workshop, 2021 ]

On amortizing convex conjugates for optimal transport [Amos, ICLR, 2023]

Meta Optimal Transport [Amos, Cohen, Luise, Redko, ICML 2023]

Tutorial on amortized optimization [Amos, Foundations and Trends in ML, 2023]



https://arxiv.org/abs/1909.12830
https://www.biorxiv.org/content/10.1101/2021.04.08.439084v1.abstract
https://arxiv.org/abs/2008.12775
https://arxiv.org/abs/2109.15316
https://arxiv.org/abs/2107.10254
https://arxiv.org/abs/2210.12153
https://arxiv.org/abs/2206.05262
https://arxiv.org/abs/2202.00665
bamos.github.io
http://github.com/facebookresearch/amortized-optimization-tutorial
http://github.com/bamos/presentations

