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Optimization is crucial technology
Optimization is a modeling and decision-making paradigm and encodes reasoning operations

Finds the best way to interact with a representation of the world

Focus: parametric optimization problems that are repeatedly solved

Brandon Amos Amortized optimization 1

𝑦⋆ 𝑥 ∈ argmin
"∈𝒞(&)

𝑓(𝑦; 𝑥)
context (or parameterization)objective

optimization variable constraints

optimal solution

vertical slices are optimization problems



Breakthroughs enabled by optimization include
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𝑦⋆ 𝑥 ∈ argmin
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𝑓(𝑦; 𝑥)
optimal solution

optimization variable

objective context (or parameterization)

constraints

1. controlling systems (robotic, autonomous, mechanical, and multi-agent)



Breakthroughs enabled by optimization include
1. controlling systems (robotic, autonomous, mechanical, and multi-agent)
2. making operational decisions based on future predictions
3. efficiently transporting or matching resources, information, and measures
4. allocating budgets and portfolios
5. designing materials, molecules, and other structures
6. solving inverse problems (to infer underlying hidden costs, incentives, geometries, terrains)
7. parameter learning of predictive and statistical models
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𝑦⋆ 𝑥 ∈ argmin
"∈𝒞(&)

𝑓(𝑦; 𝑥)
optimal solution

optimization variable

objective context (or parameterization)

constraints

Amortized optimization



Repeatedly solving optimization problems
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Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
On the model-based stochastic value gradient for continuous reinforcement learning. Amos et al., L4DC 2021.

u uuaction action action

value

𝜋 𝑥! 𝜋 𝑥" 𝜋 𝑥!#

𝜋 𝑥 = argmax
!

𝑄(𝑥, 𝑢)



This talk: amortized optimization
Design decisions
Modeling paradigms for 3𝑦" (fully-amortized and semi-amortized models)
Learning paradigms for ℒ (objective-based and regression-based)

Applications
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)
Meta-learning (HyperNets, MAML)
Sparse coding (PSD, LISTA)
Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)
Optimal transport (slicing, conjugation, Meta Optimal Transport)
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Amortization: approximate the solution map
A fast amortization model 3𝑦" can be 25,000 times faster than solving 𝑦⋆ from scratch for VAEs
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Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Amortization model 3𝑦"(𝑥) tries to approximate 𝑦⋆ 𝑥
Example: A neural network mapping from 𝑥 to the solution

Loss ℒ measures how well 3𝑦 fits 𝑦⋆ and optimized with min
"
ℒ 3𝑦"

Regression: ℒ 3𝑦" ≔ 𝔼$ % 3𝑦" 𝑥 − 𝑦⋆ 𝑥 &
&

Objective: ℒ 3𝑦" ≔ 𝔼$ % 𝑓(3𝑦" 𝑥 )



Modeling paradigms for !𝑦!
Fully-amortized models: Map from the context 𝑥 to the solution without accessing the objective 𝑓
Example: Neural network mapping from 𝑥 to the solution
Most of our applications will focus on these

Semi-amortized models: Internally access the objective 𝑓
Example: Gradient-based meta-learning models such as MAML
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and the context distribution isn’t too large. When fully-amortized models don’t work well,
we open up the black box and turn to semi-amortized models.

3.2 Semi-amortized models

Definition 3 A semi-amortized model ŷ✓ : X ! Y maps the context to the solution of the
optimization problem and accesses the objective f of eq. (1), typically iteratively.

Kim et al. (2018); Marino et al. (2018) proposed semi-amortized models for variational
inference that add back domain knowledge of the optimization problem to the model ŷ✓
that the fully-amortized models do not use. The model itself can now internally integrates
solvers to improve the prediction. Semi-amortized methods are typically iterative and update
iterates in the domain Y or in an auxiliary or latent space Z. We refer to the space the
semi-amortization iterates over as the amortization space and denote iterate t in these spaces,
respectively, as ŷ

t

✓
and z

t

✓
. While the iterates and final prediction ŷ✓ can now query the

objective f and gradient ryf , we notationally leave this dependence implicit for brevity and
only reference these queries in the relevant definitions.

3.2.1 Semi-amortized models over the domain Y

ŷ
0
✓

ŷ
1
✓

. . . ŷ
K

✓
=: ŷ✓(x)

One of the most common semi-amortized model is to parameterize and integrate an
optimization procedure used to solve eq. (1) into the model ŷ✓, such as gradient descent
(Andrychowicz et al., 2016; Finn et al., 2017; Kim et al., 2018). We emphasize that this
optimization procedure is an internal part of the amortization model ŷ✓, often referred to as
the inner-level optimization problem in the bi-level setting that arises for learning.

Examples. We now instantiate a canonical semi-amortized model based gradient descent
that learns the initialization as in model-agnostic meta-learning (MAML) by Finn et al.
(2017), structured prediction energy networks (SPENs) by Belanger et al. (2017), and semi-
amortized variational auto-encoders (SAVAEs) by Kim et al. (2018). The initial iterate
ŷ
0
✓
(x) := ✓ is parameterized by ✓ 2 X for all contexts. We then use the knowledge of the

objective f(y;x) for a given context x and iteratively update

ŷ
t

✓
:= ŷ

t�1
✓

� ↵ryf(ŷ
t�1
✓

;x) t 2 {1 . . . ,K} (2)

for K steps with a learning rate ↵ 2 R+ and set the model’s output to be ŷ✓ := ŷ
K .

Semi-amortized models over the domain can go significantly beyond gradient-based models
and in theory, any algorithm to solve the original optimization problem in eq. (1) can be
integrated into the model. We will further discuss the learning of semi-amortized models by
unrolling in section 4.2.1 and will then later see many other instantiations of it:

• Section 6.2 discusses how Gregor and LeCun (2010) integrate ISTA iterates (Daubechies
et al., 2004; Beck and Teboulle, 2009) into a semi-amortized model.

• Section 6.4.1 discusses models that integrate fixed-point computations into semi-
amortized models. Venkataraman and Amos (2021) amortize convex cone programs
by differentiating through the splitting cone solver (O’donoghue et al., 2016) and Bai
et al. (2022) amortize deep equilibrium models (Bai et al., 2019, 2020).

6

How to best-predict the solution?



Learning paradigms for ℒ
Regression-based
ℒreg 3𝑦" ≔ 𝔼$(%) 3𝑦" 𝑥 − 𝑦⋆ 𝑥 &

&
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Regression-based losses Lreg

� Does not consider f(y;x)

+ Uses global information with y
?
(x)

� Expensive to compute y
?
(x)

+ Does not compute ryf(y;x)

� Hard to learn non-unique y
?
(x)

Objective-based losses Lobj

+ Uses objective information of f(y;x)
� Can get stuck in local optima of f(y;x)
+ Faster, does not require y

?
(x)

� Often requires computing ryf(y;x)

+ Easily learns non-unique y
?
(x)

4.2 Learning iterative semi-amortized models

Fully-amortized or semi-amortized models can be learned with the regression- and objective-
based losses. Here we discuss how the loss can be further opened up and crafted to
learn iterative semi-amortized methods. For example, if the model produces intermediate
predictions ŷ

i

✓
in every iteration i, instead of optimizing the loss of just the final prediction,

i.e. L(ŷK
✓
), we can consider more generally variants of the losses that we will denote as L⌃

that consider the impact of every iteration of the model’s prediction

argmin
✓

L⌃
(ŷ✓) L⌃

(ŷ✓) :=

KX

i=0

wiL(ŷi✓), (13)

where wi 2 R+ are weights in every iteration i that give a design choice of how important
it is for the earlier iterations to produce reasonable solutions. For example, setting wi = 1

encourages every iterate to be low.
Learning iterative semi-amortized methods also has connections to sequence learning

models that arise in, e.g. text, audio, and language processing. Given the context x, an
iterative semi-amortized model seeks to produce a sequence of predictions that ultimately
result in the intermediate and final predictions, which can be analogous to a language model
predicting future text given the previous text as context. We next discuss concepts that arise
when computing the derivatives of a loss with respect to the model’s parameters.

4.2.1 Unrolled optimization and backpropagation through time

ẑ
0
✓

ẑ
1
✓

. . . ẑ
K

✓
ŷ✓(x) L

. . .

The parameterization of every iterate z
i

✓
can influence the final prediction ŷ✓ and thus

losses on top of ŷ✓ need to consider the entire chain of computations. Differentiating through
an iterative procedure such as this is referred to as backpropagation through time in sequence
models and unrolled optimization (Pearlmutter and Siskind, 2008; Zhang and Lesser, 2010;
Maclaurin et al., 2015a; Belanger and McCallum, 2016; Metz et al., 2016; Finn et al., 2017;
Han et al., 2017; Belanger et al., 2017; Belanger, 2017; Foerster et al., 2017; Bhardwaj et al.,
2020; Monga et al., 2021) when the iterates are solving an optimization problem as the model
computation is iterative and computing D✓[ŷ✓(x)] requires saving and differentiating the
“unrolled” intermediate iterations, as we saw in section 3.2.4. The terminology “unrolling”
here emphasizes that the iterative computation produces a compute graph of operations and
is likely inspired from loop unrolling in compiler optimization (Aho et al., 1986; Davidson
and Jinturkar, 1995) where loop operations are inlined for efficiency and written as a single
chain of repeated operations rather than an iterative computation of a single operation.
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Objective-based:
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What should the model !𝑦! optimize for?
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Modeling paradigms for 3𝑦" (fully-amortized and semi-amortized models)
Learning paradigms for ℒ (objective-based and regression-based)

Applications
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
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Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
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Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
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Figure 10: Many policy learning methods amortize optimization problem over the Q-values.
Given a fixed input state x, the policy ⇡✓(x) predicts the maximum value ⇡

?
(x). A stochastic

policy predicts a distribution that minimizes some probabilistic distance to the Q-distribution,
such as the expected value or KL.

6.4.5 RLQP by Ichnowski et al. (2021)

RLQP (Ichnowski et al., 2021) amortizes solutions to constrained convex quadratic optimiza-
tion problems of the form

x
?
(�) 2 argmin

x

1

2
x
>
Px+ q

>
x subject to l  Ax  u, (57)

where x 2 R
n is the domain of the optimization problem and � = {P, q, l, A, u} is the context

or parameterization (from a larger space � 2 �) of the optimization problem with P � 0

(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
the core of OSQP uses updates that first solve the system


P + �I A

>

A �diag(⇢
t
)
�1

� 
x
t+1

v
t+1

�
=


�x

t � q

z
t � diag(⇢

t
)
�1

y
t

�
(58)

and then updates
z̃
t+1

:= z
t
+ diag(⇢

t
)
�1

(v
t+1 � y

t
)

z
t+1

:= ⇧
�
z̃
t+1

+ diag(⇢
t
)
�1

y
t
�

y
t+1

:= x
t
+ diag(⇢)

�
z̃
t+1 � zt+ 1

�
,

(59)

where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s

t
, ⇢

t
).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.
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and then updates
z̃
t+1

:= z
t
+ diag(⇢

t
)
�1

(v
t+1 � y

t
)

z
t+1

:= ⇧
�
z̃
t+1

+ diag(⇢
t
)
�1

y
t
�

y
t+1

:= x
t
+ diag(⇢)

�
z̃
t+1 � zt+ 1

�
,

(59)

where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s

t
, ⇢

t
).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.
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Abstract

Lookahead search has been a critical component of recent AI successes, such as
in the games of chess, go, and poker. However, the search methods used in these
games, and in many other settings, are tabular. Tabular search methods do not
scale well with the size of the search space, and this problem is exacerbated by
stochasticity and partial observability. In this work we replace tabular search with
online model-based fine-tuning of a policy neural network via reinforcement learn-
ing, and show that this approach outperforms state-of-the-art search algorithms in
benchmark settings. In particular, we use our search algorithm to achieve a new
state-of-the-art result in self-play Hanabi, and show the generality of our algorithm
by also showing that it outperforms tabular search in the Atari game Ms. Pacman.

1 Introduction

Lookahead search has been a key component of successful AI systems in sequential decision-making
problems. For example, in order to achieve superhuman performance in go, chess and shogi, Alp-
haZero leveraged Monte Carlo tree search (MCTS) [38]. MuZero extended this even further to Atari
games, again using MCTS [32]. Without MCTS, AlphaZero performs below a top human level,
and more generally no superhuman Go bot has yet been developed that does not use some form of
MCTS. Similarly, search algorithms were a critical component of AI successes in backgammon [45],
chess [10], poker [27, 7, 8], and Hanabi [22]. However, even though different search algorithms were
used in each domain, all of them were tabular search algorithms, i.e., a distinct policy was computed
for each state encountered during search, without any function approximation to generalize between
similar states.

While tabular search has achieved great success, particularly in perfect-information deterministic
environments, its applicability is clearly limited. For example, in the popular partially observ-
able stochastic AI benchmark game Hanabi [5], one-step lookahead search involves a search over
about 500 possible next states. However, searching over all two-step joint policies would require a
search over 2020 states, which is clearly intractable for tabular search. Additionally, unlike perfect-
information deterministic games where it is only necessary to search over a tiny fraction of the next
several moves, partial observability and stochasticity make it impossible to limit the search to a tiny
subset of all possible states. Fortunately, many of these states are extremely similar, so a search
algorithm can in theory benefit by generalizing between similar states. This is the motivation for our
non-tabular search algorithm.

∗Equal Contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Variant Blueprint SPARTA SPARTA RL Search RL Search
(Single) (Multi) (Single) (Multi)

Normal 24.23 ± 0.04 24.57 ± 0.03 24.61 ± 0.02 24.59 ± 0.02 24.62 ± 0.03
63.20% 73.90% 75.46% 75.05% 75.93%

2 Hints 22.99 ± 0.04 23.60 ± 0.03 23.67 ± 0.03 23.61 ± 0.03 23.76 ± 0.04
17.50% 25.85% 26.87% 27.85% 31.01%

Table 1: Performance on Hanabi. Each cell is averaged over 2000 games. The number in the upper half of
the cell is the average score ± standard error of mean (s.e.m.) and the number in the lower half is the percentage
of winning games where agents score 25 points.

4.2 Atari

We demonstrate the generality of our approach by comparing policy gradient fine-tuning to MCTS
in two Atari environments, Ms. Pacman and Space Invaders [6]. Specifically, we aim to answer the
following questions:

1. Does RL Fine-Tuning outperforms MCTS in terms of search time and sample complexity?
Yes, RL Fine-Tuning obtains higher scores in Ms.Pacman than MCTS for a smaller search
time budget and a smaller number of samples per step.

2. Does RL Fine-Tuning performs well even with a weak blueprint? Yes, RL Fine-Tuning
obtains strong results with a weak blueprint in Ms.Pacman and improve the policy in a
much more sample-efficient way than carrying the PPO training of the weak policy.

3. Are the optimal hyperameters robust across different environments? Yes, an ablation study
on the search horizon hyperparameter reveals that the optimal search horizon is the same
for Ms. Pacman and Space Invaders.

4.2.1 Implementation

Blueprint Training. We train a PPO [34] agent until convergence in Ms. Pacman and Space In-
vaders. In both cases 107 samples are necessary to converge to the optimal PPO blueprint. We also
save a weak blueprint after 2.106 samples in Ms.Pacman to answer question 2. The weak blueprint
obtains a score that is 5 times smaller than the optimal PPO policy.

MCTS. At every testing time step, we build a tree starting from the current state. We use the
blueprint policy to guide the action selection during the tree traversal and we use the value network
every time we reach a node never seen before or we reach the depth limit of the tree. In our ex-
periments we use a depth limit of 100. We can significantly improve the performance of MCTS by
allowing for an additional hyperparameter to balance policy prior and visitation counts in the second
term:

argmax
a

Q(s, a) + c · πθ(a|x)β ·
√∑

a′ N(s, a′)

1 +N(s, a)
(8)

We obtain the best performance with c = 5 and β = 0.1.

Policy Gradient Fine-Tuning. Our method achieves a small average time budget by amortizing the
search time across multiple steps. In Ms. Pacman, we solve a finite-horizon problem of horizon 30
and we only need to replan every 30 steps (Algorithm 2). We have also tried to amortize MCTS
across multiple steps, where we update the tree only after 30 steps. In this setting however, the
episode return is worse than what is achieved by the blueprint, emphasizing the need to replan at
every timestep, which is not necessary when performing RL search. To optimize an infinite-horizon
problem rather than a finite-horizon problem, we can use the refined value instead of the blueprint
for the last step of each trajectory. The problem is still simplified due to the biased initial state
distribution. In Ms. Pacman, we have observed that this setting leads to similar improvements.

4.2.2 Results

RL Fine-Tuning outperforms MCTS for a fixed search time budget. Both MCTS and policy
gradient fine-tuning are multi-step improvement operators that optimize objective (4) using a value
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(a) Time Budget (b) Samples

Figure 1: MCTS vs RL Fine-Tuning. (a)When the average time budget is on the order of 1-10
seconds, RL Fine-Tuning consistently outperforms MCTS. (b)RL Fine-Tuning also outperforms
MCTS in terms of sample efficiency. The shaded area represent the min/max range across 5 seeds.
The curves are smoothed with an exponential moving average.

Additional Samples 0 3.105 4.105 8.105

RL Fine-Tuning 1880 3940 4580 5510
PPO Training 1880 1900 1900 1920

Table 2: Performance on Ms. Pacman with a weak blueprint. It is more sample efficient to use RL Fine-
Tuning to improve a weak blueprint rather than carrying on the PPO training.

estimate to truncate the objective. Therefore we expect both methods to achieve the same asymptotic
performance. We compare both methods with a finite time budget of the order of 10s. Figure 1 shows
the return achieved by the agent when performing either MCTS or RL search at action selection
time, versus the average search time budget. We see that RL search consistently outperforms MCTS,
contrasting with recent work showing that policy gradient was worse than MCTS for planning in the
game Hex [3]. The difference of performance with this previous work might be due to the fact that
they are using vanilla PG while we are using PPO.

RL Fine-Tuning is more sample efficient than MCTS. With RL search, we need an average of
621 samples and 1.2 seconds per step to achieve a return of 8080 which is more than 2 times the
return achieved by our asymptotic PPO policy. The total number of additional samples needed is
502,000, which is less than 5% of the samples needed for the blueprint PPO policy to converge. In
contrast, MCTS requires an average of 4489 samples per step to reach a cumulative reward of 5820.

RL Fine-Tuning obtains strong results even with a weak blueprint. We run experiments in
the Ms. Pacman environment using poorer blueprints and compare the average cumulative reward
obtained by continuing the PPO training versus performing RL Fine-Tuning for the same number
of additional samples. For a blueprint trained during 2000 epochs of 1024 samples (around 1/5
of convergence and obtaining an average cumulative reward of 1880), RL fine-tuning can reach
an average cumulative reward of 5510 with an online search using on average 1145 samples per
step. In contrast, continuing the PPO training of the blueprint using the same number of additional
samples used by RL fine-tuning yields a policy that reach an average cumulative reward of 1920 only
(see table 2). We also test a randomly initialized blueprint: RL fine-tuning can reach an average
cumulative reward of 2730 with an online search using on average 1360 samples per step while
the PPO training of this blueprint with the same number of additional samples yields an average
cumulative reward of 1280 only (see table 3).

The hyperparamters of RL Fine-Tuning are robust across different environments. After per-
forming the same ablation study on the horizon in both Ms. Pacman and Space Invaders, we have
found that the optimal horizon is 32 for both environments. Thus there is reason to think that this
value is nearly optimal in several other Atari games and readers willing to apply our method to other
Atari games should start experimenting with this value.
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Optimal controls over time — force on the cartpole

Full control sequence space

Subspace of
optimal solutions

Cartpole videos

Amortize by learning a latent subspace of optimal solutions
Only search over optimal solutions rather than the entire space

The differentiable cross-entropy method. Amos and Yarats, ICML 2020.
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Full control sequence space

Subspace of
optimal solutions

Amortize by learning a latent subspace of optimal solutions
The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

Latent space
of optimal solutions
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Given a VAE model 𝑝 𝑥 = log ∫) 𝑝 𝑥 𝑧 𝑝(𝑥),  encoding amortizes the optimization problem

𝜆⋆ 𝑥 = argmax
*

ELBO(𝜆; 𝑥) where      ELBO 𝜆; 𝑥 ≔ 𝔼+ );* log 𝑝(𝑥|𝑧) − DKL 𝑞 𝑥; 𝜆 𝑝(𝑧)).

u
∏?(x) ∏̂µ(x)

ELBO(∏; x)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

𝜆𝑥" 𝑥# 𝑥$



VAE amortization is conceptually the same as RL

Brandon Amos Amortized optimization 16

VAE posterior amortization

argmax
"

𝔼$(%) ELBO( Q𝜆"(𝑥); 𝑥)

Value gradient amortization in RL

argmax
"

𝔼$ % 𝑄(𝑥, 𝜋" 𝑥 )

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

Figure 10: Many policy learning methods amortize optimization problem over the Q-values.
Given a fixed input state x, the policy ⇡✓(x) predicts the maximum value ⇡

?
(x). A stochastic

policy predicts a distribution that minimizes some probabilistic distance to the Q-distribution,
such as the expected value or KL.

6.4.5 RLQP by Ichnowski et al. (2021)

RLQP (Ichnowski et al., 2021) amortizes solutions to constrained convex quadratic optimiza-
tion problems of the form

x
?
(�) 2 argmin

x

1

2
x
>
Px+ q

>
x subject to l  Ax  u, (57)

where x 2 R
n is the domain of the optimization problem and � = {P, q, l, A, u} is the context

or parameterization (from a larger space � 2 �) of the optimization problem with P � 0

(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
the core of OSQP uses updates that first solve the system


P + �I A

>

A �diag(⇢
t
)
�1

� 
x
t+1

v
t+1

�
=


�x

t � q

z
t � diag(⇢

t
)
�1

y
t

�
(58)

and then updates
z̃
t+1

:= z
t
+ diag(⇢

t
)
�1

(v
t+1 � y

t
)

z
t+1

:= ⇧
�
z̃
t+1

+ diag(⇢
t
)
�1

y
t
�

y
t+1

:= x
t
+ diag(⇢)

�
z̃
t+1 � zt+ 1

�
,

(59)

where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s

t
, ⇢

t
).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.
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Given a task 𝒯, amortize the computation of the optimal parameters of a model

𝜃⋆ 𝒯 = argmax
"

ℓ𝒯(𝜃)
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Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Given a dictionary𝑊. of basis vectors and input 𝑥, a sparse code is recovered with

𝑦⋆ 𝑥 ∈ argmin
/

𝑥 −𝑊.𝑦 &
& + 𝛼 𝑦 0

Predictive sparse decomposition (PSD) and Learned ISTA (LISTA) amortize this problem
Kavukcuoglu, Ranzato, and LeCun, 2010. Gregor and LeCun, 2010.
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Finding fixed points 𝑦 = 𝑔 𝑦 𝑥⋆ = argmin
%

1
2 𝑥

1𝑄𝑥 + 𝑝1𝑥

subject to 𝑏 − 𝐴𝑥 ∈ 𝒦

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0

• The standard Euclidean projection onto the non-negative orthant R
n
+ is defined by

⇡(x) 2 argmin
y

1

2
kx� yk22 s. t. y � 0, (20)

and has a closed-form solution given the ReLU, i.e. ⇡(x) := max{0, x}.

• The interior of the unit hypercube [0, 1]
n can be projected onto with the entropy-

regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �Hb(y), (21)

where

Hb(y) =:=

 
X

i

yi log yi + (1� yi) log(1� yi)

!
(22)

is the binary entropy function. Eq. (21) has a closed-form solution given by the sigmoid
or logistic function, i.e. ⇡(x) := (1 + e

�x
)
�1.

• The interior of the (n� 1)-simplex defined by

�n�1 := {p 2 R
n | 1>p = 1 and p � 0} (23)

can be projected onto with the entropy-regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �H(y) s. t. 1

>
y = 1 (24)

where H(y) := �
P

i
yi log yi is the entropy function. Eq. (24) has a closed-form

solution given by the softargmax, i.e. ⇡(x)j = e
xj/
P

i
e
xi , which is historically referred

to as the softmax.

Going beyond these, we next cover differentiable projections onto convex cones, noting that
they can also be softened or regularized to help with continuity when composed with learning
and amortization methods. Ali et al. (2017); Busseti et al. (2019) discuss differentiating the
standard Euclidean projections onto these, including:

• The second-order, Lorentz, or ice cream cone defined by
Ksoc := {(x, y) 2 R

m�1 ⇥ R : kxk2  y}. The standard
Euclidean projection is given in closed form as

⇡(x, y) :=

8
><

>:

0 kxk2  �y

(x, y) kxk2  y

1
2(1 +

y

kxk2 )(x, kxk2) otherwise.
(25)

and can be explicitly differentiated.

• The positive semidefinite cone Sm
+ of the space of m⇥m positive semidefinite matrices.

The Euclidean projection is obtained in closed-form by projecting the eigenvalues to
be non-negative with ⇡(X) :=

P
i
max{�i, 0}qiq>i , where the eigenvalue decomposition

of X is given by X =
P

i
�iqiq

>
i

. The derivative can be computed by differentiating
through the eigenvalue decomposition and projection of the eigenvalues.
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Meta Optimal Transport. Amos et al., ICML 2023.
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Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.
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𝑓9 𝑦 = − inf
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On amortizing convex conjugates for optimal transport. Amos, ICLR 2023
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Future directions and limitations
Amortized optimization is established and budding with new methods and applications

Possible to expand far beyond unconstrained continuous Euclidean optimization settings:
1. New applications and settings for semi-amortized modeling
2. Constrained domains (e.g., with differentiable projections)
3. Discrete optimization settings (e.g., with differentiable discrete optimization)
4. Non-Euclidean settings (e.g., with Riemannian optimization)

Potential limitations:
1. Difficult in out-of-domain settings when the contexts significantly change
2. Generally difficult to ensure stability or convergence
3. Typically does not solve previously intractable problems
4. Can be difficult to obtain high-accuracy solutions without fine-tuning/semi-amortization

Brandon Amos Amortized optimization 23

5.1.2 Unconstrained ! constrained optimization

Amortized constrained optimization problems may naturally arise, for example in the convex
optimization settings we consider in section 6.4 and for optimization over the sphere we
discuss in section 7. Constrained optimization problems for amortization can often be
represented as an extension of eq. (1) with

y
?
(x) 2 argmin

y2C
f(y;x), (18)

where the constraints C may also depend on the context x A budding research area studies
how to more generally include constraints into the formulation. Baker (2019); Dong et al.
(2020); Zamzam and Baker (2020); Pan et al. (2020) learn to warm-start for optimal power
flow. Misra et al. (2021) learn active sets for constrained optimization. Kriváchy et al. (2020)
solves constrained feasibility SDPs with a fully-amortized neural network model using an
objective-based loss. Donti et al. (2021) learns a fully-amortized model and optimizes an
objective-based loss with additional completion and correction terms to ensure the prediction
satisfies the constraints of the original problem.

Differentiable projections. When the constraints are relatively simple, a differentiable
projection can transform a constrained optimization problem into an unconstrained one,
e.g., in reinforcement learning constrained action spaces can be transformed from the box
[�1, 1]

n to the reals Rn by using the tanh to project from R
n to [�1, 1]

n. Section 7 also uses
a differentiable projection from R

n onto the sphere Sn�1. We define these as:

Definition 4 A projection from R
n onto a set C ✓ R

n is

⇡C : R
n ! C ⇡C(x) 2 argmin

y2C
D(x, y) + ⌦(y), (19)

where D : R
n ⇥ R

n ! R is a distance and ⌦ : R
n ! R

is a regularizer that can ensure invertibility or help spread
R
n more uniformly throughout C. A (sub)differentiable

projection has (sub)derivatives rx⇡C(x). We sometimes
omit the dependence of ⇡ on the choice of D, ⌦, and C when
they are given by the surrounding context.

C

x

⇡C(x)

Lack of idempotency. In linear algebra, a projection is defined to be idempotent,
i.e. applying the projection twice gives the same result so that ⇡ � ⇡ = ⇡. Unfortunately,
projections as defined in definition 4, such as Bregman projections, are not idempotent in
general and often ⇡C � ⇡C 6= ⇡C as the regularizer ⌦ may cause points that are already on C
to move to a different position on C.

Differentiable projections for constrained amortization. These can be used to
cast Eq. (18) as the unconstrained problem eq. (1) by composing the objective with a
projection f � ⇡C . (Sub)differentiable projections enable gradient-based learning through the
projection and is the most easily attainable when the projection has an explicit closed-form
solution. For intuition, we first interpret the ReLU, sigmoid, and softargmax as differentiable
projections that solve convex optimization problems in the form of eq. (19). Amos (2019,
§2.4.4) further discusses these and proves them using the KKT conditions:
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