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Abstract

We develop a computationally tractable method for estimating the optimal map
between two distributions over R with rigorous finite-sample guarantees. Leveraging
an entropic version of Brenier’s theorem, we show that our estimator—the barycentric
projection of the optimal entropic plan—is easy to compute using Sinkhorn’s algorithm.
As a result, unlike current approaches for map estimation, which are slow to evaluate
when the dimension or number of samples is large, our approach is parallelizable and
extremely efficient even for massive data sets. Under smoothness assumptions on the
optimal map, we show that our estimator enjoys comparable statistical performance
to other estimators in the literature, but with much lower computational cost. We
showcase the efficacy of our proposed estimator through numerical examples. Our
proofs are based on a modified duality principle for entropic optimal transport and on
a method for approximating optimal entropic plans due to Pal (2019).

ON AMORTIZING CONVEX CONJUGATES
FOR OPTIMAL TRANSPORT

Brandon Amos
Meta Al

ABSTRACT

This paper focuses on computing the convex conjugate operation that arises when
solving Euclidean Wasserstein-2 optimal transport problems. This conjugation,
which is also referred to as the Legendre-Fenchel conjugate or c-transform, is
considered difficult to compute and in practice, Wasserstein-2 methods are lim-
ited by not being able to exactly conjugate the dual potentials in continuous space.
I show that combining amortized approximations to the conjugate with a solver
for fine-tuning is computationally easy. This combination significantly improves
the quality of transport maps learned for the Wasserstein-2 benchmark by Korotin
et al. (2021a) and is able to model many 2-dimensional couplings and flows con-
sidered in the literature. All of the baselines, methods, and solvers in this paper
are available at: http://github.com/facebookresearch/w2ot
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Background: optimal transport connects spaces

Studies how to transport mass between probability measures
* Yields a geometry for probability measures, e.g. to interpolate between them
* Generalizes matching and linear assignment problems

Monge’s formulation between Euclidean spaces with a squared distance cost is:

T*(a, B) € argmin Ey_g|lx — T(x)|I3
TeC(a,pB)

where a, f are measures, C(a, ) is a coupling, T is a transport map from a to .

Most computational work takes a and [ to be discrete measures
* Results in convex formulations with efficient solvers (e.g., linear programming, Sinkhorn)

ON(
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2.1.1 Entropic OT between discrete measures with the Sinkhorn algorithm

Leta := .7 a;0,, and 8 := 3.7, b;6,, be Algorithm 1 Sinkhorn(e, 3, ¢, €, fo = 0, go = 0)

discrete measures, where 6, is a Dirac at point ~ for iteration i = 1 to NV do

zand a € A,,—1 and b € A,,_1 are in the fi < €loga —elog (KTGXP{Qi—l/f})

probability simplex defined by dgt? + elogb —elog (K ' exp{fi-1/e})
ena ior

A1 = {z € R* :z > 0and Zm’ =1} (2 Compute Py from fx, gy using eq. (6)
; return Py ~ P*

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program

P*(a, B,c) € grgUr(nig(C’, P) U(a,b) :={P e R}*™: P1,, = a, P'1,=b} (3
eU(a,

where P is a coupling matrix, P*(c, 3) is the optimal coupling, and the cost can be discretized as a
matrix C' € R™*" with entries C; j := ¢(%;,y;), and (C, P) := 3, . C; ; P, j,

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to
smooth the objective as in Cominetti and Martin [1994], Cuturi [2013], resulting in:

P*(a, B,c,€) € argmin(C, P) — eH(P) 4)
PeU(a,b)

where H(P) := —}_, . P; j(log(P; ;) — 1) is the discrete entropy of a coupling matrix P.
Entropic OT dual. As presented in Peyré et al. [2019, Prop. 4.4], the dual of eq. (4) is

f*7g* € argmax (f’ (L) + <ga b> —€ (exp{f/e}, KeXp{g/€}> ) Ki,j = eXp{_Ci,j/e}’ (5)
fER™ geR™

where K € R™*™ is the Gibbs kernel and the dual variables or potentials f € R™ and g € R™ are
associated, respectively, with the marginal constraints P1,, = a and P"1,, = b. The optimal duals
depend on the problem, e.g. f*(a, 3, c, €), but we omit this dependence for notational simplicity.
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Discrete OT: permutations and matchings

LEARNING LATENT PERMUTATIONS WITH GUMBEL-
SINKHORN NETWORKS

Gonzalo E. Mena * David Belanger Scott Linderman Jasper Snoek
Department of Statistics, Google Brain Department of Statistics, = Google Brain
Columbia University Columbia University

gem2131@columbia.edu

ABSTRACT

Permutations and matchings are core building blocks in a variety of latent vari-
able models, as they allow us to align, canonicalize, and sort data. Learning in
such models is difficult, however, because exact marginalization over these com-
binatorial objects is intractable. In response, this paper introduces a collection
of new methods for end-to-end learning in such models that approximate discrete e
maximum-weight matching using the continuous Sinkhorn operator. Sinkhorn
operator is attractive because it functions as a simple, easy-to-implement analog
of the softmax operator. With this, we can define the Gumbel-Sinkhorn method,
an extension of the Gumbel-Softmax method (Jang et al., 2016; Maddison et al.,
2016) to distributions over latent matchings. We demonstrate the effectiveness
of our method by outperforming competitive baselines on a range of qualitatively
different tasks: sorting numbers, solving jigsaw puzzles, and identifying neural
signals in worms.
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Convolutional Wasserstein Distances:
Efficient Optimal Transportation on Geometric Domains

Justin Solomon Fernando de Goes Gabriel Peyré Marco Cuturi
Stanford University Pixar Animation Studios CNRS & Univ. Paris-Dauphine Kyoto University

Adrian Butscher Andy Nguyen Tao Du Leonidas Guibas
Autodesk, Inc. Stanford University Stanford University Stanford University

AR YYY Y © "

Figure 1: Shape interpolation from a cow to a duck to a torus via convolutional Wasserstein barycenters on a 100 x 100 X 100 grid, using the
method at the beginning of §7.
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Limitations of discrete OT

1. Computationally challenging for high-dimensional measures (10k+ points)
* Costand coupling matrices may be large (100M+ entries when measures have 10k+ points)
* Results in high-dimensional convex optimization problems
* (Approximations may help reduce these burdens, e.g., hierarchies/slicing)
2. Usesdiscretized geometries that may come from truly continuous spaces
* Ignores the continuous structure which may come up in practice
* Noteasy to obtain the true continuous transport map

Monge’s Euclidean Wasserstein-2 formulation

T*(a,B) € argmin Ex_qllx — T(x)|I3
TeC(a,pB)

Brandon Amos Continuous OT



Duality and continuous OT

A

Monge (primal) 1" =vy Kantorovich (dual)
T*(a, B) € argmin Eygllx — T(0)|13 H f € argmax — Exq[f ()] — Ey-p[f* ()]
TeC(a,p) feLl(a)
*(y) == — 12£( J¢(x;y)  with objective  Jy(z;y) = f(x) — (z,y).

When a and (8 are discrete:
« T isadoubly stochastic matrix, f is a finite-dimensional vector, and the dual is convex w.r.t. f
* Expectations in the objectives are exactly computable

When a and 8 are continuous:
 Tisacontinuous maps.t. Ty = (3, in general hard to satisfy and optimize over
* Density models (e.g., flows) only have to satisfy Tya = f without being optimal, still hard
« fisacontinuous map. The dual no longer convex w.r.t. most parameterizations of f
* The expectations need to be approximated from samples

Brandon Amos Continuous OT 8



Wasserstein GAN: continuous Wasserstein-1 OT

Wasserstein-1:

min [E, _,|lx —

reBin T,

f € argmax
fel—Lipschitz

Exolf (x)] — IEy~ﬁ’ [f ()]

Potential f is 1-Lipschitz and self-conjugate

Most of this talk: computing Wasserstein-2
Potential f is convex, conjugate is the Fenchel

Brandon Amos

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values a = 0.00005, ¢ = 0.01, m = 64, ncritic = .

Require: : «, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6y, initial generator’s parameters.

1: while 6 has not converged do

for t =0, ..., Neritic do
Sample {z()}™  ~ P, a batch from the real data.
Sample {z(i)}m ~p(z) a batch of pr10r samples.
Juw < Vu [ it fw(x(z)) =1 fw(g(?(z(z)))]
w + w + « - RMSProp(w, gw)
w « clip(w, —c¢, ¢)

end for

Sample {z(!}™, ~ p(z) a batch of prior samples.

10: 9o < _VG% E:ll fw(ge(z(i)))

1 6 < 6 — a - RMSProp(6, go)

12: end while

Continuous OT
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https://arxiv.org/abs/2110.02999

Computing continuous (Wasserstein-2) OT maps

Approach 1. solve a discrete OT problem with Sinkhorn and extend the solution to be continuous

Entropic estimation of optimal transport maps

Aram-Alexandre Pooladian*, Jonathan Niles-Weed*t

*Center for Data Science, New York University
fCourant Institute of Mathematical Sciences, New York University
ap6599@nyu.edu, jnw@cims.nyu.edu

May 10, 2022

Approach 2. use neural networks!

We write P, = £ 3"  6x, and Q, = L 37 | 8y, for the empirical distributions corre-
sponding to the samples from P and @, respectively. Our proposed estimator is T (5 n),
the entropic map between P, and @),,, which can be written explicitly as

2
B %Zyzl Ye = 9e,(nm) (Vi) =3 lz=Yill*)

zs(nn)(w) =
5Ty 1 n 1 n.m) (Yi —Lz-Y;]|2 )

(14)

where g, (n.n) is the entropic potential corresponding to @, in the optimal entropic plan
between P,, and @Q,,, which can be obtained as part of the output of Sinkhorn’s algorithm (see

2-wasserstein approximation via restricted convex potentials. Taghvaei and Jalali, 2019.
Three-Player Wasserstein GAN via Amortised Duality. Nhan Dam et al., IJCAI 2019.

Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020.
Wasserstein-2 generative networks. Korotin et al., ICLR 2020.

On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

Brandon Amos
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Solving Kantorovich’s dual with a neural net

2-wasserstein approximation via restricted convex potentials with application to improved training for GANs. Taghvaei and Jalali, 2019.

Parameterize the dual potential fg: X - R

Optimize the dual objective

max V(0) where V() :=— E |fo()] - ]Eﬂ[fe*(y)] =- E [fe(x)Hy]EB [ 1 (2(y))] -

0 T~ Y T~

Jr(zsy) = f(x) — (2, y).

Assumes access to the exact conjugate is available

Differentiating and applying Danskin’s envelope theorem gives:

rr~o

=— E [Vofo(x)]+ E [Vofo(2(y))]

T~ O Yynr~v

VoV(0) = Vo |~ E [fo@)]+ B 5, (#w)

Brandon Amos Continuous OT
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Algorithm 2 CONJUGATE(f, y, Zinit)

X <— Tinit

Computing the conjugate f*  mtunwe,
f y) =~ lnf Jr(z;y) with objective  Jy(z;y) == f(z) — (z,y). end while

return optimal Z(y) = =

Numerically solving (e.g., with L-BFGS, SGD, or Adam)
2-wasserstein approximation via restricted convex potentials. Taghvaei and Jalali, 2019.

Amortization: parameterize and learn to predict the argmin (i.e., Xy =~ x*)
Three-Player Wasserstein GAN via Amortised Duality. Nhan Dam et al., [JCAI 2019.
Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020.

Wasserstein-2 generative networks. Korotin et al., ICLR 2020.

Both: combine amortization with a numerical solve for fine-tuning
On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

Brandon Amos Continuous OT 12



Entropic estimation vs. neural networks

L1 Yies (e nm (Y=g lle—Yil")
Teom) =S TG @ Hle v T(x) = Vyfo(x)
Has convergence guarantees No convergence guarantees
Easy when Sinkhorn is tractable (~1k-10k samples) Scales to 1M+ samples from the measures
Not done in high-dimensions SOTA benchmark results (in up to 10k dimensions)
Evaluating T: sum over discrete solutions Evaluating T: derivative of a neural network
Entropy may cause Tza + [ No entropy, but Tya = f may still not be perfect

Brandon Amos Continuous OT 13



Learning flows via continuous OT

On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

Challenges for learning flows (with potentials or otherwise) 9f1(y)
1. The model needs to be invertible py (y) = px (" (v)) ‘ 5 < ‘
2. The likelihood of the base density is required Y

Optimizing the potential-based flow for the Kantorovich dual can help with both of these!
1. Often parameterize the model as a non-convex MLP, invertibility no longer matters
2. Only requires samples from the densities

maxV(6) where V() =~ E [fole)] ~ E [fiw)] =~ E [fo)]+ B L5 ().

T~ o

0 T~V o y

J(zsy) == flz) — (z,y).

Brandon Amos Continuous OT 14



Beyond Euclidean Wasserstein-2 OT

Unpublished/active areas of research I’m thinking about:

1. Continuous Riemannian OT
2. Continuous Gromov-Wasserstein

Brandon Amos Continuous OT
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Continuous Riemannian OT

Existing work getting close, but not computing OT

Riemannian Convex Potential Maps

Samuel Cohen *!

Abstract

Modeling distributions on Riemannian manifolds
is a crucial component in understanding non-
Euclidean data that arises, e.g., in physics and
geology. The budding approaches in this space
are limited by representational and computational
tradeoffs. We propose and study a class of flows
that uses convex potentials from Riemannian opti-
mal transport. These are universal and can model
distributions on any compact Riemannian mani-
fold without requiring domain knowledge of the
manifold to be integrated into the architecture. We
demonstrate that these flows can model standard
distributions on spheres, and tori, on synthetic and
geological data. Our source code is freely avail-
able online at github.com/facebookresearch/rcpm.

Base

Brandon Amos *? Yaron Lipman?3

Yi Vo

Figure 1. Ilustration of a discrete c-concave function ¢ (blue) over
a base manifold M (bold line). These consist of discrete compo-
nents {c;,y; } and have a Riemannian gradient V¢ € T, M.

need to squeeze mass in zero volume subspaces. Moreover,
knawledoe of the enace seametrv can imnrave the learnino

RCPM

L@

Contir

Riemannian Flow Matching on General Geometries

Ricky T. Q. Chen! Yaron Lipman '2

Abstract

We propose Riemannian Flow Matching (RFM),
a simple yet powerful framework for training con-
tinuous normalizing flows on manifolds. Existing
methods for generative modeling on manifolds
either require expensive simulation, inherently
cannot scale to high dimensions, or use approx-
imations to limiting quantities that result in bi-
ased objectives. Riemannian Flow Matching by-
passes these inconveniences and exhibits multiple
benefits over prior approaches: It is completely
simulation-free on simple geometries, it does not
require divergence computation, and its target vec-
tor field is computed in closed form even on gen-
eral geometries. The key ingredient behind RFM
is the construction of a simple kernel function
for defining per-sample vector fields, which sub-
sumes existing Euclidean cases. Extending to gen-
eral geometries, we rely on the use of spectral de-
compositions to efficiently compute kernel func-
tions. Our method achieves state-of-the-art per-
formance on real-world non-Euclidean datasets,
and we showcase, for the first time, tractable train-
ing on general geometries, including on triangular
meshes and maze-like manifolds with boundaries.

Figure 1: Riemannian Conditional Flow Matching (RCFM)
regresses onto the vector field of flows z; connecting a
source xo ~ p and and a target z; ~ g. (Left) On general
geometries, x; is obtained through solving an ODE. (Right)
On simple geometries (e.g., hypersphere), RCFM can set x;
as a geodesic path and is completely simulation-free.

E

(a) Distributions (b) Model trajectories

Figure 5: (a) Source (green) and target (yellow) distributions
on a manifold with non-trivial boundaries. (b) Samples from
a CNF model trained through Riemannian Flow Matching
with the Biharmonic distance.
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RIEMANNIAN METRIC LEARNING VIA OPTIMAT
TRANSPORT

Ground truth Ours Baseline

Christopher Scarvelis Justin Solomon
MIT CSAIL MIT CSAIL
scarv@mit.edu jsolomon@mit.edu

ABSTRACT

We introduce an optimal transport-based model for learning a metric tensor from

cross-sectional samples of evolving probability measures on a common Riemannian A

manifold. We neurally parametrize the metric as a spatially-varying matrix field and Figure 4: By using a metric A(z) learned from time-stamped bird sightings, we obtain inferred
efficiently optimize our model’s objective using a simple alternating scheme. Using trajectories (center) that capture the curved structure of the ground truth migratory paths (left). Our
this learned metric, we can nonlinearly interpolate between probability measures method results in a 26.9% reduction in mean DTW distance between the inferred and ground truth
and compute geodesics on the manifold. We show that metrics learned using our trajectories relative to the Euclidean baseline (right).

method improve the quality of trajectory inference on scRNA and bird migration

data at the cost of little additional cross-sectional data.

K
i w13 ( [, S @b - [ F@at@) R

AIRD—)S£+ ¢kM—>R —1
196" (@)l 410 <1
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Gromov-Wasserstein

Traditionally solved in entropic/discrete settings

Inputs: {(similarity /kernel matrix, histogram)}
(d, /L) = Zz /L'L'(S:L'i di,i' - d(xla xi/)
(d,v) v= >; ViOy, dj i = d(y;, yj)

Def. Gromov-Wasserstein distance: g g iened
GW2(d, i, d,v) = min &P (T) & spaces
[N et ) TEC, » d,d :—g.
def. -
E 4D E Y ldiy — djylP T 5T 5 =

o
zﬂ' ’.7’.7

(Source: Gabriel Peyré, Justin Solomon, Marco Cuturi)

Brandon Amos
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Entropic Metric Alignment for Correspondence Problems

Justin Solomon™
MIT

Gabriel Peyré

Abstract

Many shape and image processing tools rely on computation of cor-
respondences between geometric domains. Efficient methods that
stably extract “soft” matches in the presence of diverse geometric
structures have proven to be valuable for shape retrieval and transfer
of labels or semantic information. With these applications in mind,
we present an algorithm for probabilistic correspondence that opti-
mizes an entropy-regularized Gromov-Wasserstein (GW) objective.
Built upon recent developments in numerical optimal transportation,
our algorithm is compact, provably convergent, and applicable to
any geometric domain expressible as a metric measure matrix. We
provide comprehensive experiments illustrating the convergence
and applicability of our algorithm to a variety of graphics tasks.
Furthermore, we expand entropic GW correspondence to a frame-
work for other matching problems, incorporating partial distance
matrices, user guidance, shape exploration, symmetry detection, and
joint analysis of more than two domains. These applications expand
the scope of entropic GW correspondence to major shape analysis
problems and are stable to distortion and noise.

Keywords: Gromov-Wasserstein, matching, entropy

Concepts: eComputing methodologies — Shape analysis;

Continuous OT

CNRS & Univ. Paris-Dauphine

Vladimir G. Kim
Adobe Research

Suvrit Sra
MIT

i
11

Source Targets

Figure 1: Entropic GW can find correspondences between a source
surface (left) and a surface with similar structure, a surface with
shared semantic structure, a noisy 3D point cloud, an icon, and a
hand drawing. Each fuzzy map was computed using the same code.

are violated these algorithms suffer from having to patch together
local elastic terms into a single global map.

In this paper, we propose a new correspondence algorithm that
minimizes distortion of long- and short-range distances alike. We
study an entropically-regularized version of the Gromov-Wasserstein
(GW) mapping objective function from [Mémoli 2011] measuring
the distortion of geodesic distances. The optimizer is a probabilistic
matching expressed as a “fuzzy” correspondence matrix in the style
of [Kim et al. 2012; Solomon et al. 2012]; we control sharpness of

the corresnondence via the weight of an entronic resularizer.
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https://speakerdeck.com/gpeyre/from-monge-kantorovich-to-gromov-wasserstein-optimal-transport-and-barycenters-between-several-metric-spaces

Gromov-Wasserstein for RL

Another application only using discrete GW, even though the spaces are truly continuous

CROSS-DOMAIN IMITATION LEARNING
VIA OPTIMAL TRANSPORT

Arnaud Fickinger'3* Samuel Cohen?® Stuart Russell! Brandon Amos®
'Berkeley Al Research 2University College London *Facebook Al

ABSTRACT

Cross-domain imitation learning studies how to leverage expert demonstrations of
one agent to train an imitation agent with a different embodiment or morphology.
Comparing trajectories and stationary distributions between the expert and imi-
tation agents is challenging because they live on different systems that may not
even have the same dimensionality. We propose Gromov-Wasserstein Imitation
Learning (GWIL), a method for cross-domain imitation that uses the Gromov-
Wasserstein distance to align and compare states between the different spaces of Fig}lre 1: The Gromov-Wass;rstein distanc‘e enables us to compare the stationa_ry state-action distri-
the agents. Our theory formally characterizes the scenarios where GWIL pre- butions of two agents w.1th dlfferfent dynamics and state-action spaces. We use it as a pseudo-reward
. . .. spianiaze s tse for cross-domain imitation learning.

serves optimality, revealing its possibilities and limitations. We demonstrate the

effectiveness of GWIL in non-trivial continuous control domains ranging from

simple rigid transformation of the expert domain to arbitrary transformation of

the state-action space. '
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Gromov-Wasserstein for single-cell multi-omics

Another application only using discrete GW, could have continuous extensions

Gromov-Wasserstein optimal transport to align single-cell
multi-omics data

Pinar Demetci*!-2, Rebecca Santorella*?, Bjorn Sandstede®, William Stafford
Noble*?, and Ritambhara Singh!*?

cellin P P Domain #2 (Chromatin accessibility)
>~ P 0503 % K_/H
! Department of Computer Science, Brown University ceﬂn ) o"‘::"} g $I T2 RS §
2Center for Computational Molecular Biology, Brown University v Cellin EGeno*me coom'dina‘es A -~ g ¢ & 8 ¢
3Division of Applied Mathematics, Brown University

) Gene expression
= For each domain, kNN graphs are constructed and

Population intra-domain distance matrices are created

Cell #3
ofcells: N celtn A\ A

o®
T A 00553: — % 3 | conma i:lj o®
Abstract Cell #m Genomemnfj\mates Soo0® e domain alignment via

. . . S . Chromatin accessibility Probabilistic coupling matrix () barycentric projection
Data integration of single-cell measurements is critical for our understanding of cell development from Gromov-Wasserstein transport X0 X
and disease, but the lack of correspondence between different types of single-cell measurements
makes such efforts chal]enging, Several unsupervised a]gorithms are capab]e of aligning hetero- Flgure 1: Schematic of application of SCOT to single-cell multi-omics data alignment. A population
geneous types of single-cell measurements in a shared space, enabling the creation of mappings  of cells is aliquoted for different single-cell sequencing assays in order to capture complementary aspects
between single cells in different data modalities. We present Single-Cell alignment using Optimal (e.g. gene expression and chromatin accessibility) of the molecular dynamics in single cells. Data
Transport (SCOT), an unsupervised learning algorithm that uses Gromov Wasserstein-based optimal obtained from these assays may exhibit different observed manifolds but share a common latent manifold.
transport to align single-cell multi-omics datasets. SCOT calculates a probabilistic coupling ma-  SCOT constructs k-NN graphs, where vertices represent cells, and Euclidean distances between them
trix that matches cells across two datasets. The optimization uses k-nearest neighbor graphs, thus weigh the edges between the k-nearest neighbors. The SCOT algorithm finds a probabilistic coupling
preserving the local geometry of the data. We use the resulting coupling matrix to project one single-  petween the samples of each domain that will minimize the distance between the two intra-domain graph

cell data§et onto another via a b_arycenmc projection. We compare the alignment performance of  4iq4a 06 matrices. Barycentric projection uses this coupling matrix to project one domain onto another.
SCOT with state-of-the-art algorithms on three simulated and two real datasets. Our results demon-

strate that SCOT yields results that are comparable in quality to those of competing methods, but
SCOT is significantly faster and requires tuning fewer hyperparameters. The code is available at
https://github.com/rsinghlab/SCOT

*Department of Genome Sciences, University of Washington Cell #2

SPaul G. Allen School of Computer Science and Engineering, University of Washington
*Equal Contribution

Domain #1 (Gene expression)
Y
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Gromov-Wasserstein Alignment of Word Embedding Spaces

David Alvarez-Melis

Tommi S. Jaakkola

CSAIL, MIT CSAIL, MIT
dalvmel@mit .edu tommi@mit.edu

Brandon An

Abstract

Cross-lingual or cross-domain correspon-
dences play key roles in tasks ranging from
machine translation to transfer learning. Re-
cently, purely unsupervised methods operating
on monolingual embeddings have become ef-
fective alignment tools. Current state-of-the-
art methods, however, involve multiple steps,
including heuristic post-hoc refinement strate-
gies. In this paper, we cast the correspon-
dence problem directly as an optimal trans-
port (OT) problem, building on the idea that
word embeddings arise from metric recovery
algorithms. Indeed, we exploit the Gromov-
Wasserstein distance that measures how sim-
ilarities between pairs of words relate across
languages. We show that our OT objective
can be estimated efficiently, requires little or
no tuning, and results in performance compa-
rable with the state-of-the-art in various unsu-
pervised word translation tasks.

Discretizes a continuous feature space, solves discrete GW

Algorithm 1 Gromov-Wasserstein Computation
for Word Embedding Alignment

Input: Source and target embeddings X, Y.
Regularization A. Probability vectors p, q.
// Compute intra-language similarities
C; + cos(X,X), C;+ cos(Y,Y)
Cyt + CIpl,, +1.q(C)"
while not converged do
/Il Compute pseudo-cost matrix (Eq. (9))
Cr + Cy — 2C,I'C{
/I Sinkhorn iterations (Eq. (7))
a1, K exp{-Cp/)\}
while not converged do
a«—p2Kb,be~qoK'a
end while
I' « diag (a) K diag (b)
end while
// Optional step: Learn explicit projection
U,2, VT « SVD(XT'Y")
P=UV"
return [P

21



Learning Generative Models across Incomparable Spaces
Discretizes continuous spaces, solves discrete GW

Charlotte Bunne ! David Alvarez-Melis> Andreas Krause ' Stefanie Jegelka?

Abstract a. target i iteration 100 iteration 500 iteration 5000

Generative Adversarial Networks have shown re-
markable success in learning a distribution that
faithfully recovers a reference distribution in its
entirety. However, in some cases, we may want to
only learn some aspects (e.g., cluster or manifold
structure), while modifying others (e.g., style, ori-
entation or dimension). In this work, we propose
an approach to learn generative models across

SllCh incomparablc SpaCCS, alld dcmOl'lStl'atc hOW Figure 3. The GW GAN can be applied to generate samples of a. reduced and b. increased dimensionality compared to the target

PR s R distribution. All plots show 1000 samples.
to steer the learned distribution towards target R R S B
properties. A key component of our model is generated b. target generated
the Gromov-Wasserstein distance, a notion of dis- [ _— PO

CPPo - . L) 5
crepancy that compares distributions relationally | * &\ = 3
o - e oo . $ -
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relational learning and cross-domain learning. e .
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GW for cross-domain alighmen

Discretizes a continuous feature space, solves discrete GW

Graph Optimal Transport for Cross-Domain Alignment

Liqun Chen' Zhe Gan® Yu Cheng’ Linjie Li> Lawrence Carin' Jingjing Liu?

Abstract

Cross-domain alignment between two sets of en-
tities (e.g., objects in an image, words in a sen-
tence) is fundamental to both computer vision
and natural language processing. Existing meth-
ods mainly focus on designing advanced attention
mechanisms to simulate soft alignment, with no
training signals to explicitly encourage alignment.
The learned attention matrices are also dense and
lacks interpretability. We propose Graph Optimal
Transport (GOT), a principled framework that ger-
minates from recent advances in Optimal Trans-
port (OT). In GOT, cross-domain alignment is
formulated as a graph matching problem, by rep-
resenting entities into a dynamically-constructed
graph. Two types of OT distances are considered:
(i) Wasserstein distance (WD) for node (entity)
matching; and (i7) Gromov-Wasserstein distance
(GWD) for edge (structure) matching. Both WD
and GWD can be incorporated into existing neu-
ral network models, effectively acting as a drop-
in regularizer. The inferred transport plan also
yields sparse and self-normalized alignment, en-
hancing the interpretability of the learned model.
Experiments show consistent outperformance of
GOT over baselines across a wide range of tasks,
including image-text retrieval, visual question an-
swering, image captioning, machine translation,
and text summarization.

Dialiuuvlii AU

tol et al., 2015), and machine translation (Bahdanau et al.,
2015; Vaswani et al., 2017). Considering VQA as an ex-
ample, in order to understand the contexts in the image and
the question, a model needs to interpret the latent align-
ment between regions in the input image and words in the
question. Specifically, a good model should: (i) identify en-
tities of interest in both the image (e.g., objects/regions) and
the question (e. g., words/phrases), (ii) quantify both intra-
domain (within the image or sentence) and cross-domain
relations between these entities, and then (7i7) design good
metrics for measuring the quality of cross-domain alignment
drawn from these relations, in order to optimize towards
better results.

CDA is particularly challenging as it constitutes a weakly
supervised learning task. That is, only paired spaces of
entity are given (e.g., an image paired with a question),
while the ground-truth relations between these entities are
not provided (e.g., no supervision signal for a “dog” re-
gion in an image aligning with the word “dog” in the ques-
tion). State-of-the-art methods principally focus on design-
ing advanced attention mechanisms to simulate soft align-
ment (Bahdanau et al., 2015; Xu et al., 2015; Yang et al.,
2016b;a; Vaswani et al., 2017). For example, Lee et al.
(2018); Kim et al. (2018); Yu et al. (2019) have shown that
learned co-attention can model dense interactions between
entities and infer cross-domain latent alignments for vision-
and-language tasks. Graph attention has also been applied to
relational reasoning for image captioning (Yao et al., 2018)
and VQA (Li et al., 2019a), such as graph attention network

Input Data

Neural
Network

fo(-)

i \ J

Y

Figure 2. Schematic computation graph of the Graph Optimal Transport (GOT) distance used for cross-domain alignment. WD is short
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for Wasserstein Distance, and GWD is short for Gromov-Wasserstein Distance. See Sec. 2.1 and 2.4 for details.
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Continuous Gromov-Wasserstein

Studied theoretically, but not many computational instantiations
Seems promising to use other continuous OT methods (entropic or neural) for subproblems here
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Theorem 4.2.5. Let X and Y be compact subset of respectively RP and R?. Let p € P(X),v € P(Y).
Assume without loss of generality that Ex,[X] =0 and Ey.,[Y] = 0. Then problems:

ot [(x =B~y — /B *dn(x,y)dn(x,y) (saGW)
and )
sup sup [ ((Pxy), + 3y IB)dnx,y) - Pl (duak-sqGW)
m€ll(p,v) PERIXP
are equivalent.
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