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Disclaimer
This is an introduction to optimal control for machine learning researchers
• Perspective: a starting map of ideas rather than a comprehensive coverage
• A tour through some of my favorite ideas, foundations, and recent papers
• Will emphasize the engineering side — concepts most useful for building systems

Focus also on continuous control, but many concepts transfer to discrete settings
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What is optimal control?
Optimal control is about 1) modeling part of the world and 2) interacting with that model
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The brachistochrone problem
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

source

𝑎

𝑏

fastest ramp
slower ramps

ball rolling down a ramp shape of the ramp

Source code examples in Dymos and APMonitor

⇄state
controls

!!

"!
Johann Bernoulli, 1696

https://en.wikipedia.org/wiki/Brachistochrone_curve
https://openmdao.github.io/dymos/examples/brachistochrone/brachistochrone.html
https://apmonitor.com/wiki/index.php/Apps/BrachistochroneProblem


Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

Source: Boston Dynamics

actuators e.g., torques on the joints, thrusters, 
steering, acceleration, braking

https://www.youtube.com/watch?v=fn3KWM1kuAw


Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

📚 Learning Agile and Dynamic Motor Skills for Legged Robots. Hwangbo et al., Science Robotics 2019.

Source

actuators e.g., torques on the joints, thrusters, 
steering, acceleration, braking

https://www.youtube.com/watch?v=ITfBKjBH46E


Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

📚 RMA: Rapid Motor Adaptation for Legged Robots. Ashish Kumar et al., RSS 2021.

Source

actuators e.g., torques on the joints, thrusters, 
steering, acceleration, braking

https://www.youtube.com/watch?v=tpFQR_HUYss


Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

Source

📚 Advanced skills through multiple adversarial motion priors in reinforcement learning. Vollenweider et al., ICRA 2023.

actuators e.g., torques on the joints, thrusters, 
steering, acceleration, braking

https://www.youtube.com/watch?v=kEdr0ARq48A


Optimal control in robotics

Brandon Amos On optimal control and machine learning 9

Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

Source: Shadow Robotics

actuators e.g., torques on the joints, thrusters, 
steering, acceleration, braking

https://www.youtube.com/watch?v=xyqJ6_cdenI


Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

Source

A Hohmann transfer orbit. See also:
📚 Dynamical Systems, the Three-Body Problem and Space Mission Design. Koon et al., 1999.

actuators e.g., torques on the joints, thrusters, 
steering, acceleration, braking

https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif


Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system actuators

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

Source

Source: SpaceX

📚 Convex Programming Approach to Powered Descent Guidance for Mars Landing. Açıkmeşe and Ploen, 2007.
📚 Minimum-landing-error powered-descent guidance for Mars landing using convex optimization. Blackmore et al., 2010.
📚 Lossless Convexification of Nonconvex Control Bound and Pointing Constraints of the Soft Landing Optimal Control Problem. Açıkmeşe et al., 2013.

e.g., torques on the joints, thrusters, 
steering, acceleration, braking

https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif


Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system actuators

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

Source

Source: SpaceX

e.g., torques on the joints, thrusters, 
steering, acceleration, braking

Source: Waymo

https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif
https://www.youtube.com/watch?v=ospoTAyEdDQ


Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system actuators

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞! ̈𝑞! + 𝑛 𝑞! , �̇�! = 𝜏 𝑞! + 𝐵𝑢!

Source

Source: SpaceX

e.g., torques on the joints, thrusters, 
steering, acceleration, braking

Source

📚 Learning high-speed flight in the wild. Loquercio et al., Science Robotics 2021.

https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif
https://www.youtube.com/watch?v=m89bNn6RFoQ


[Control→ML] interpret ML problems as control problems, solve with control methods❗

Where does machine learning fit in?
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⇄
state

controls

𝑥!

𝑢!

Machine learning (ML) is about using data to 1) create abstractions, and 2) make predictions

[ML→Control] learn how to model and interact with the world from data (e.g., reinforcement learning)

e.g., RL from human feedback for language models

Data

Optimal control is about 1) modeling part of the world and 2) interacting with that model



This talk: machine learning ⇄ optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning
+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)
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How do we (passively) model the world?
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Mechanics is the paradise of the mathematical sciences,
because by means of it one comes to the fruits of mathematics.

da Vinci (1459-1519), Notebooks, v. 1, ch. 20.
📚 Quote also given at the beginning of Geometric Control of Mechanical Systems, Bullo and Lewis, 2000.

1. Make observations 2. Come up with a theory

Source
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Continuous time Discrete time
�̇�! = 𝑓 𝑥!

x0 x1

Figure 2: A function xt ( ) providing a path between x0 and x1 with time derivatives ẋt ( ).

The first step is to understand how to mathematically represent the changing states of a system over
time, e.g. a pendulum swinging or a ball bouncing over time. Time is often represented as a real-valued
number t 2 R and interpreted as the relative time that has passed since some reference time, e.g. in seconds
or milliseconds. The state of a system is represented as a parametric function of time, e.g. x : I ! Rm where
I is an interval. A common notational convention is to notate this function with a subscript, i.e. xt := x(t),
and the derivative with respect to time at a point t using Newton’s dot notation, i.e. ẋt : I ! Rm. The
values of states over time are referred to as trajectories and create curves or paths. Figure 2 shows an
example of a 2-dimensional trajectory xt along with the derivatives ẋt and components across each spacial
dimension x0 and x1. In this note, the state space of the system is taken to be the Euclidean space Rm for
simplicity, but this makes it di�cult to capture non-Euclidean geometries such as rotational geometries that
the states of a system may live in — extensions for these non-Euclidean spaces are discussed in texts such
as Bullo and Lewis [2019].

Now given observations of a physical process over time, one can create a theory of how the motion was
produced by specifying xt, e.g. Newtonian mechanics for rigid-body motion. While there are many ways of
defining xt, a first-order ordinary di↵erential equation (ODE) is capable of expressing many deterministic
physical systems, which for the purposes of this note can be defined with:

Definition 1 An uncontrolled first-order dynamical system is modeled by a first-order di↵erential

equation ẋt = f(xt) for t � 0. States xt can be obtained by specifying an initial time and state and solving

an initial value problem. For example, if the initial state x0 is specified at time t = 0, the trajectory of states

for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs)ds. (1)

The dynamics of many deterministic systems in isolation are well-studied and classical topics throughout
physics and mechanics that are captured by definition 1. The ODE is usually written as a first-order system
to have a standard form — this is not limiting because any higher-order system can be transformed into a
first-order system. First-order systems can also be extended to geometries beyond Euclidean spaces, e.g. as
in Bullo and Lewis [2019].

We can now passively observe and model a first-order dynamical system with an ODE; the next step is to
define a way of interacting with the system that influence where the states are going to go. This is often an
important design decision when building systems as there could be many possible options for interacting with
it. For a robotic system, interaction may come from applying torques to the joints, varying the forces from
actuators, engines, or thrusters of an aircraft, changing the temperatures of a chemical system, or changing
the orientation of a steering wheel, rudder, or thruster. To do this, a control signal is usually added to the
model and separated from the other variables:

Definition 2 A controlled first-order dynamical system is a first-order dynamical system with states

xt : I ! R
m

where the first-order dynamics have an additional dependency on a control, or action, which
is a parametric function of t, i.e. ut : I ! Rn

. The ODE is specified by ẋt = ft(xt, ut) and can be integrated

as before, e.g. given an initial state x0, and controls ut, the trajectory of states for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs, us)ds. (2)

4

e.g., differential equations (ODE/PDEs)

d𝑥! = 𝑓 𝑥! d𝑡 + 𝐹 𝑥! d𝐵!

TODO
(Indirect) definition 3 ! optimality conditions (Hamilton-Jacobi-Bellman (PDE), Pontryagin’s principle

(ODE)) ! Discretize and solve
(Direct) definition 3 ! discretize to

argmin
z2Rp

g(z) subject to z 2 Cz (7)

Figure 7: TODO: continuous optimal control solutions

x0 x1

sampled trajectories mean trajectory E[xt]

Figure 8: TODO: sde

2.1.4 Solving discrete-time problems

TODO: Standard, show notation, point to other LQR/MPC references
box-DDP [Tassa et al., 2014]

2.2 Stochastic dynamics and control

stochastic process Gallager [2013]

2.2.1 . . . in continuous time

SDE books Øksendal and Øksendal [2003], Evans [2012]

Definition 5 (Controlled SDE dynamics)

dxt = ft(xt, ut)dt+ Ft(xt, ut)dWt (9)

(TODO: ẋ velocities) Integrating the SDE gives

xt = x0 +

Z
t

0
fs(xs, us)ds+

Z
t

0
Ft(xs, us)dWs (10)

controlled Itô di↵usion

[Yong and Zhou, 1999] [Fleming and Rishel, 2012] Finance [Touzi, 2010] [Frankowska et al., 2018]

Definition 6 (Continuous-time stochastic control) TODO

[Bonnans and Silva, 2012] PMP risk-averse stochastic OC problems [Bonalli and Bonnet, 2023]

2.2.2 . . . in discrete time

TODO
[Bertsekas and Shreve, 1996] [Tedrake, 2023, Chapter 14]
[Mesbah, 2016]

8

e.g., stochastic differential equations

𝑥!"# = 𝑓 𝑥! , 𝑤!
𝑤! ∼ 𝑝(𝑤)

e.g., Markov chains

𝑥!"# = 𝑓 𝑥!

e.g., Turing machines, games

📚 Learning Neural Event Functions for Ordinary Differential Equations.
     Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel, ICLR 2021.

Source

https://www.youtube.com/watch?v=eakKfY5aHmY
https://en.wikipedia.org/wiki/Orbital_mechanics


Machine learning way of learning dynamics
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Continuous time Discrete time

1. Collect data of the system 2. Throw neural networks at it

Source: NVIDIA
📚 FourCastNet, Pathak et al., 2022.

�̇�! = 𝑓$ 𝑥!

x0 x1

Figure 2: A function xt ( ) providing a path between x0 and x1 with time derivatives ẋt ( ).

The first step is to understand how to mathematically represent the changing states of a system over
time, e.g. a pendulum swinging or a ball bouncing over time. Time is often represented as a real-valued
number t 2 R and interpreted as the relative time that has passed since some reference time, e.g. in seconds
or milliseconds. The state of a system is represented as a parametric function of time, e.g. x : I ! Rm where
I is an interval. A common notational convention is to notate this function with a subscript, i.e. xt := x(t),
and the derivative with respect to time at a point t using Newton’s dot notation, i.e. ẋt : I ! Rm. The
values of states over time are referred to as trajectories and create curves or paths. Figure 2 shows an
example of a 2-dimensional trajectory xt along with the derivatives ẋt and components across each spacial
dimension x0 and x1. In this note, the state space of the system is taken to be the Euclidean space Rm for
simplicity, but this makes it di�cult to capture non-Euclidean geometries such as rotational geometries that
the states of a system may live in — extensions for these non-Euclidean spaces are discussed in texts such
as Bullo and Lewis [2019].

Now given observations of a physical process over time, one can create a theory of how the motion was
produced by specifying xt, e.g. Newtonian mechanics for rigid-body motion. While there are many ways of
defining xt, a first-order ordinary di↵erential equation (ODE) is capable of expressing many deterministic
physical systems, which for the purposes of this note can be defined with:

Definition 1 An uncontrolled first-order dynamical system is modeled by a first-order di↵erential

equation ẋt = f(xt) for t � 0. States xt can be obtained by specifying an initial time and state and solving

an initial value problem. For example, if the initial state x0 is specified at time t = 0, the trajectory of states

for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs)ds. (1)

The dynamics of many deterministic systems in isolation are well-studied and classical topics throughout
physics and mechanics that are captured by definition 1. The ODE is usually written as a first-order system
to have a standard form — this is not limiting because any higher-order system can be transformed into a
first-order system. First-order systems can also be extended to geometries beyond Euclidean spaces, e.g. as
in Bullo and Lewis [2019].

We can now passively observe and model a first-order dynamical system with an ODE; the next step is to
define a way of interacting with the system that influence where the states are going to go. This is often an
important design decision when building systems as there could be many possible options for interacting with
it. For a robotic system, interaction may come from applying torques to the joints, varying the forces from
actuators, engines, or thrusters of an aircraft, changing the temperatures of a chemical system, or changing
the orientation of a steering wheel, rudder, or thruster. To do this, a control signal is usually added to the
model and separated from the other variables:

Definition 2 A controlled first-order dynamical system is a first-order dynamical system with states

xt : I ! R
m

where the first-order dynamics have an additional dependency on a control, or action, which
is a parametric function of t, i.e. ut : I ! Rn

. The ODE is specified by ẋt = ft(xt, ut) and can be integrated

as before, e.g. given an initial state x0, and controls ut, the trajectory of states for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs, us)ds. (2)

4

e.g., Neural ODEs/PDEs, neural operators

a neural network

d𝑥! = 𝑓$ 𝑥! d𝑡 + 𝐹$ 𝑥! d𝐵!

TODO
(Indirect) definition 3 ! optimality conditions (Hamilton-Jacobi-Bellman (PDE), Pontryagin’s principle

(ODE)) ! Discretize and solve
(Direct) definition 3 ! discretize to

argmin
z2Rp

g(z) subject to z 2 Cz (7)

Figure 7: TODO: continuous optimal control solutions

x0 x1

sampled trajectories mean trajectory E[xt]

Figure 8: TODO: sde

2.1.4 Solving discrete-time problems

TODO: Standard, show notation, point to other LQR/MPC references
box-DDP [Tassa et al., 2014]

2.2 Stochastic dynamics and control

stochastic process Gallager [2013]

2.2.1 . . . in continuous time

SDE books Øksendal and Øksendal [2003], Evans [2012]

Definition 5 (Controlled SDE dynamics)

dxt = ft(xt, ut)dt+ Ft(xt, ut)dWt (9)

(TODO: ẋ velocities) Integrating the SDE gives

xt = x0 +

Z
t

0
fs(xs, us)ds+

Z
t

0
Ft(xs, us)dWs (10)

controlled Itô di↵usion

[Yong and Zhou, 1999] [Fleming and Rishel, 2012] Finance [Touzi, 2010] [Frankowska et al., 2018]

Definition 6 (Continuous-time stochastic control) TODO

[Bonnans and Silva, 2012] PMP risk-averse stochastic OC problems [Bonalli and Bonnet, 2023]

2.2.2 . . . in discrete time

TODO
[Bertsekas and Shreve, 1996] [Tedrake, 2023, Chapter 14]
[Mesbah, 2016]

8

e.g., Neural SDEs, diffusion models, flow matching
📚 Deep unsupervised learning using nonequilibrium thermodynamics. Sohl-Dickstein et al., ICML 2015.
📚 Score-Based Generative Modeling through Stochastic Differential Equations. Song et al., ICLR 2021.
📚 Flow Matching for Generative Modeling. Lipman et al., ICLR 2023.
📚 Stochastic Interpolants. Albergo et al.,  ICLR 2023.

neural networks

17

𝑥!"# = 𝑓$ 𝑥!

e.g., RNNs, LSTMs, Transformers
for language and other discrete-time sequential data

a neural network

𝑥!"# = 𝑓$ 𝑥! , 𝑤!
𝑤! ∼ 𝑝$(𝑤)

e.g., RNNs with stochastic states

📚 A Recurrent Latent Variable Model for Sequential Data. Chung et al., NeurIPS 2015.
📚 Sequential Neural Models with Stochastic Layers. Fraccaro et al., NeurIPS 2016.

neural networks

📚 Learning Neural Constitutive Laws. Ma et al., ICML 2023.

Brandon Amos On optimal control and machine learning

https://www.youtube.com/watch?v=nuT_U1AQz3g


Adding interactions — controlled dynamics
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Continuous time Discrete time

⇄
state

controls

𝑥!

𝑢!

�̇�! = 𝑓 𝑥! , 𝑢!

x0 x1

Figure 2: A function xt ( ) providing a path between x0 and x1 with time derivatives ẋt ( ).

The first step is to understand how to mathematically represent the changing states of a system over
time, e.g. a pendulum swinging or a ball bouncing over time. Time is often represented as a real-valued
number t 2 R and interpreted as the relative time that has passed since some reference time, e.g. in seconds
or milliseconds. The state of a system is represented as a parametric function of time, e.g. x : I ! Rm where
I is an interval. A common notational convention is to notate this function with a subscript, i.e. xt := x(t),
and the derivative with respect to time at a point t using Newton’s dot notation, i.e. ẋt : I ! Rm. The
values of states over time are referred to as trajectories and create curves or paths. Figure 2 shows an
example of a 2-dimensional trajectory xt along with the derivatives ẋt and components across each spacial
dimension x0 and x1. In this note, the state space of the system is taken to be the Euclidean space Rm for
simplicity, but this makes it di�cult to capture non-Euclidean geometries such as rotational geometries that
the states of a system may live in — extensions for these non-Euclidean spaces are discussed in texts such
as Bullo and Lewis [2019].

Now given observations of a physical process over time, one can create a theory of how the motion was
produced by specifying xt, e.g. Newtonian mechanics for rigid-body motion. While there are many ways of
defining xt, a first-order ordinary di↵erential equation (ODE) is capable of expressing many deterministic
physical systems, which for the purposes of this note can be defined with:

Definition 1 An uncontrolled first-order dynamical system is modeled by a first-order di↵erential

equation ẋt = f(xt) for t � 0. States xt can be obtained by specifying an initial time and state and solving

an initial value problem. For example, if the initial state x0 is specified at time t = 0, the trajectory of states

for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs)ds. (1)

The dynamics of many deterministic systems in isolation are well-studied and classical topics throughout
physics and mechanics that are captured by definition 1. The ODE is usually written as a first-order system
to have a standard form — this is not limiting because any higher-order system can be transformed into a
first-order system. First-order systems can also be extended to geometries beyond Euclidean spaces, e.g. as
in Bullo and Lewis [2019].

We can now passively observe and model a first-order dynamical system with an ODE; the next step is to
define a way of interacting with the system that influence where the states are going to go. This is often an
important design decision when building systems as there could be many possible options for interacting with
it. For a robotic system, interaction may come from applying torques to the joints, varying the forces from
actuators, engines, or thrusters of an aircraft, changing the temperatures of a chemical system, or changing
the orientation of a steering wheel, rudder, or thruster. To do this, a control signal is usually added to the
model and separated from the other variables:

Definition 2 A controlled first-order dynamical system is a first-order dynamical system with states

xt : I ! R
m

where the first-order dynamics have an additional dependency on a control, or action, which
is a parametric function of t, i.e. ut : I ! Rn

. The ODE is specified by ẋt = ft(xt, ut) and can be integrated

as before, e.g. given an initial state x0, and controls ut, the trajectory of states for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs, us)ds. (2)

4

𝑥!"# = 𝑓 𝑥! , 𝑢!

d𝑥! = 𝑓 𝑥! , 𝑢! d𝑡 + 𝐹 𝑥! , 𝑢! d𝐵!

TODO
(Indirect) definition 3 ! optimality conditions (Hamilton-Jacobi-Bellman (PDE), Pontryagin’s principle

(ODE)) ! Discretize and solve
(Direct) definition 3 ! discretize to

argmin
z2Rp

g(z) subject to z 2 Cz (7)

Figure 7: TODO: continuous optimal control solutions

x0 x1

sampled trajectories mean trajectory E[xt]

Figure 8: TODO: sde

2.1.4 Solving discrete-time problems

TODO: Standard, show notation, point to other LQR/MPC references
box-DDP [Tassa et al., 2014]

2.2 Stochastic dynamics and control

stochastic process Gallager [2013]

2.2.1 . . . in continuous time

SDE books Øksendal and Øksendal [2003], Evans [2012]

Definition 5 (Controlled SDE dynamics)

dxt = ft(xt, ut)dt+ Ft(xt, ut)dWt (9)

(TODO: ẋ velocities) Integrating the SDE gives

xt = x0 +

Z
t

0
fs(xs, us)ds+

Z
t

0
Ft(xs, us)dWs (10)

controlled Itô di↵usion

[Yong and Zhou, 1999] [Fleming and Rishel, 2012] Finance [Touzi, 2010] [Frankowska et al., 2018]

Definition 6 (Continuous-time stochastic control) TODO

[Bonnans and Silva, 2012] PMP risk-averse stochastic OC problems [Bonalli and Bonnet, 2023]

2.2.2 . . . in discrete time

TODO
[Bertsekas and Shreve, 1996] [Tedrake, 2023, Chapter 14]
[Mesbah, 2016]

8

𝑥!"# = 𝑓 𝑥! , 𝑢! , 𝑤!
𝑤! ∼ 𝑝(𝑤)



This talk: machine learning ⇄ optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning
+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)
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Formulating basic optimal control problems
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Continuous time Discrete time

Optimal control is about 1) modeling part of the world and 2) interacting with that model

min
!
	𝐶" 𝑥" +(

#$%

"
𝑐#(𝑥#, 𝑢#)

	 subject	to	 �̇� = 𝑓 𝑥#, 𝑢# , 𝑥%	given

min
!
𝔼 𝐶"(𝑥") + (

#$%

"
𝑐#(𝑥#, 𝑢#)

	 subject	to	 d𝑥# = 𝑓 𝑥#, 𝑢# d𝑡 + 𝐹 𝑥#, 𝑢# d𝐵#	
𝑥%	given	

min
!":$%&

	𝐶" 𝑥" + @
#$%

"&'

𝑐#(𝑥#, 𝑢#)

	 subject	to	 𝑥#(' = 𝑓 𝑥#, 𝑢# , 𝑥%	given

min
!":$%&

𝔼 𝐶" 𝑥" + @
#$%

"&'

𝑐#(𝑥#, 𝑢#) 	

	 subject	to	 𝑥#(' = 𝑓 𝑥#, 𝑢#, 𝑤# , 	 𝑤#∼ 𝑝(𝑤)
𝑥%	given

*Can add many more constraints/variations



Solving optimal control problems
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at Stanford



Analyzing controllers
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at Stanford



Analyzing controllers
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at Stanford



Other optimal control courses & books
1. Adaptive and nonlinear control, Maxim Raginsky [UIUC ECE 517] 
2. SDEs in Optimization, Control, and Learning, Maxim Raginsky [UIUC ECE 586]
3. Robotic manipulation, Russ Tedrake [MIT 6.4210]
4. Underactuated robotics, Russ Tedrake [MIT 6.8210]
5. Optimal control, Zac Manchester [CMU 16-745]
6. Optimal and Learning-Based Control, Spencer M. Richards and Daniele Gammelli [Stanford AA 203]

… and many others
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https://maxim.ece.illinois.edu/teaching/fall22/index.html
%7Bhttp:/maxim.ece.illinois.edu/teaching/spring23/index.html
https://manipulation.csail.mit.edu/
https://underactuated.csail.mit.edu/
https://www.youtube.com/playlist?list=PLZnJoM76RM6Iaf59ICcU9-DzztGZvK_52
https://stanfordasl.github.io/aa203/
https://www.cs.cmu.edu/~cga/dynopt/description.html


Optimal control as a function
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(no learning yet, all optimization)

argmin
4,:./0

	𝐶5 𝑥5 + +
678

59:

𝑐6(𝑥6, 𝑢6)

	 subject	to	 𝑥6;: = 𝑓 𝑥6, 𝑢6
𝑥, 𝑐6, 𝐶<, 𝑓 𝜋(𝑥; 𝑐6, 𝐶5, 𝑓)



Where does machine learning fit in?
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argmin
4,:./0

	𝐶5 𝑥5 + +
678

59:

𝑐6(𝑥6, 𝑢6)

	 subject	to	 𝑥6;: = 𝑓 𝑥6, 𝑢6
𝑥, 𝑐6, 𝐶<, 𝑓 𝜋(𝑥; 𝑐6, 𝐶5, 𝑓)

dynamics learning

cost learning
value learning

policy learning
(amortized optimization)

differentiable control
𝜕
𝜕𝑓
𝜋(𝑥)

Reinforcement learning (/approximate dynamic programming)
usually value and policy learning, especially when 𝑓 is unknown



Markov decision processes and RL
A Markov decision process (MDP) is a stochastic control process:
• State space 𝒳, control space 𝒰
• Transition dynamics 𝑓 𝑥, 𝑢
• Reward function 𝑟 𝑥, 𝑢

A policy 𝜋:𝒳 → 𝒰 maps a state to a reward.
Goal: find the optimal policy to maximize the value
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Comparing the MDP to optimal control
MDPs focus strongly on infinite horizon/time-invariant policies 𝜋 𝑥
• May not exist for all OC problems
MDPs usually more difficult to add constraints/extra terms to
• E.g., goal conditioning or time-varying constraints
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MDP policies (and closed loop control)Optimal control (open-loop)

min
!
	 (
#$%

"
𝑥# − 𝐵 )

	 subject	to	 �̇� = 𝑓 𝑥#, 𝑢# , 𝑥% = 𝐴 min
*
𝔼	𝑄(𝑥, 𝜋* 𝑥 )

𝜋(𝑥)

📚 An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. Matthew Kelley, SIAM Review, 2017.



Repeatedly optimizing for computing a policy
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u uuaction action action

value

𝜋 𝑥' 𝜋 𝑥+ 𝜋 𝑥')

𝜋 𝑥 = argmax
!

𝑄 𝑥, 𝑢 ≔ 𝑟 𝑥, 𝑢 + 𝔼	𝑉 𝑥"



Policy learning and amortized optimization
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📚 Continuous control with deep reinforcement learning. Lillicrap et al., ICLR 2016.
📚 Learning Continuous Control Policies by Stochastic Value Gradient. Heess et al., NeurIPS 2015.
📚 Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

𝜋 𝑥 = argmax
4

𝑄(𝑥, 𝑢)

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

Figure 10: Many policy learning methods amortize optimization problem over the Q-values.
Given a fixed input state x, the policy ⇡✓(x) predicts the maximum value ⇡

?
(x). A stochastic

policy predicts a distribution that minimizes some probabilistic distance to the Q-distribution,
such as the expected value or KL.

6.4.5 RLQP by Ichnowski et al. (2021)

RLQP (Ichnowski et al., 2021) amortizes solutions to constrained convex quadratic optimiza-
tion problems of the form

x
?
(�) 2 argmin

x

1

2
x
>
Px+ q

>
x subject to l  Ax  u, (57)

where x 2 R
n is the domain of the optimization problem and � = {P, q, l, A, u} is the context

or parameterization (from a larger space � 2 �) of the optimization problem with P � 0

(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
the core of OSQP uses updates that first solve the system
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where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s

t
, ⇢

t
).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.
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or parameterization (from a larger space � 2 �) of the optimization problem with P � 0

(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
the core of OSQP uses updates that first solve the system
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where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
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RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.
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argmax
?

𝔼@ A 	𝑄(𝑥, 𝜋? 𝑥 )
Independently solve Learn a policy to predict the solution



Further reading on amortized optimization
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Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport)



argmin
4,:./0

	𝐶5 𝑥5 + +
678

59:

𝑐6(𝑥6, 𝑢6)

	 subject	to	 𝑥6;: = 𝑓 𝑥6, 𝑢6

Model-based stochastic value gradients
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📚 Learning Continuous Control Policies by Stochastic Value Gradient. Heess et al., NeurIPS 2015. 
📚 Imagined value gradients. Byravan et al., CoRL 2020.
📚 On the model-based stochastic value gradient for continuous reinforcement. B. Amos et al., L4DC 2021.

dynamics learning

cost learning
value learning

𝜋(𝑥; 𝑐6, 𝐶5, 𝑓)
policy learning



Diffusion for control and RL
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📚 Planning with Diffusion for Flexible Behavior Synthesis. Janner*, Du*, et al., ICML 2022.
📚 Is Conditional Generative Modeling all you need for Decision-Making? Ajay*, Du* et al., ICML 2023.

Predicting 1) dynamics,  2) rewards, and 3) optimal trajectories/policies



Reinforcement learning topics
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Control & reinforcement learning resources
1. A Tour of Reinforcement Learning: The View from Continuous Control. Benjamin Recht, 2019.
2. Deep Reinforcement Learning. Sergey Levine. [Berkeley CS 285]
3. Reinforcement learning. David Silver [UCL]
4. Deep Reinforcement Learning. Katerina Fragkiadaki [CMU 10-703]
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https://rail.eecs.berkeley.edu/deeprlcourse/
https://www.davidsilver.uk/teaching/
https://cmudeeprl.github.io/703website_f20/


This talk: machine learning ⇄ optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning
+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)
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Controllers don’t live in isolation

𝑥#:%⋆ , 𝑢#:%⋆ ∈ argmin
',:.,!,:.

 :
)

𝐶* 𝑥), 𝑢)  s.t. 𝑥# = 𝑥init	 𝑥)+# = 𝑓* 𝑥), 𝑢) 	 𝑢) ∈ 𝒰
cost dynamics constraintsinitial state

𝜃

𝜋* 𝑥 ≝ 𝑢#⋆(𝑥, 𝜃)

controller parameters
(design space of cost and model)

solve control optimization problem

𝒥(𝜋*)

execute control policy on the system

measure downstream performance of the controller

We can often measure the downstream performance induced by the controller
Idea: optimize (i.e., tune/learn) the parameters for a downstream performance metric
Controller-design loop is not a new idea and has been extensively used over the past century

Full notation: 𝑢#:&⋆ (𝑥init, 𝜃)



∇?𝒥 𝜋?

Differentiate the controller!

differentiable control

We can often measure the downstream performance induced by the controller
Idea: optimize (i.e., tune/learn) the parameters for a downstream performance metric
by differentiating through the control optimization problem

or D$ 𝜋$(𝑥)

𝑥#:%⋆ , 𝑢#:%⋆ ∈ argmin
',:.,!,:.

 :
)

𝐶* 𝑥), 𝑢)  s.t. 𝑥# = 𝑥init	 𝑥)+# = 𝑓* 𝑥), 𝑢) 	 𝑢) ∈ 𝒰
cost dynamics constraintsinitial state

𝜃

𝜋* 𝑥 ≝ 𝑢#⋆(𝑥, 𝜃)

controller parameters
(design space of cost and model)

solve control optimization problem

𝒥(𝜋*)

execute control policy on the system

measure downstream performance of the controller

Full notation: 𝑢#:&⋆ (𝑥init, 𝜃)



Each vertical slice is a control problem

Derivatives in RL and control
The policy (or value) gradient

Derivative of value w.r.t. a parameterized policy:

∇*𝔼'/	[𝑄 𝑥), 𝜋* 𝑥) ]

For policy learning via amortized optimization
𝑄-value can be model-based or model-free
Works for deterministic and stochastic policies

Differentiable control

Derivative of actions w.r.t. controller parameters:

𝜕𝑢#:%⋆ (𝜃)/𝜕𝜃

Controller induces a model-based policy

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

𝑢⋆ 𝜃

𝜃

𝑢



Implicit differentiation

Idea: Differentiate controller’s optimality conditions

Agnostic of the control algorithm
Ill-defined if controller gives suboptimal solution
Memory and compute efficient: free in some cases

How to differentiate the controller?

Brandon Amos Differentiable optimization for control and RL 40

Unrolling or autograd

Idea: Implement controller, let autodiff do the rest
Like MAML’s unrolled gradient descent

Ideal when unconstrained with a short horizon
Does not require a fixed-point or optimal solution
Instable and resource-intensive for large horizons

Can unroll algorithms beyond gradient descent
The differentiable cross-entropy method

û0
✓ û1

✓
. . . ûK

✓ ⇡̂✓(x) J
. . .

DH𝑢⋆ 𝜃 = −DJ𝑔 𝜃, 𝑢⋆ 𝜃 KLDH𝑔 𝜃, 𝑢⋆ 𝜃

📚 Differentiable MPC. Amos et al., NeurIPS 2018; Differentiable convex optimization layers. Agrawal*, Amos*, et al., NeurIPS 2019;
The differentiable cross-entropy method. ICML 2020; Learning Convex Optimization Control Policies, Agrawal* et al., L4DC 2020.



End-to-end model learning starting references

Brandon Amos Differentiable optimization for control and RL 41

… among many others!



This talk: machine learning ⇄ optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning
+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)
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Euclidean distance as optimal control
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📚 On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint. Chen et al., 2016. (Section II.B)



Optimal control for optimal transport
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📚 On the relation between optimal transport and Schrödinger bridges: A stochastic control viewpoint. Chen et al., 2016

📚 Deep Generalized Schrödinger Bridge. Liu et al., NeurIPS 2022.

📚 Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory. Chen*, Liu*, and Theodorou, ICLR 2022.

Euclidean path
optimal control between two points

(Entropic) optimal transport path
stochastic optimal control between two measures



Optimal control+RL for solving QPs
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Solver parameters during training

Optimal control is about 1) modeling part of the world and 2) interacting with that model

Solving a quadratic program

📚Accelerating quadratic optimization with reinforcement learning. Ichnowski et al., NeurIPS 2021.



a language model

Reinforcement learning from human feedback
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📚 Deep reinforcement learning from human preferences.  Christiano et al., NeurIPS 2017; Fine-tuning language models from human preferences. Ziegler et al., 2019.  Learning 
to summarize with human feedback. Stiennon et al., NeurIPS 2020.  Training language models to follow instructions with human feedback. Ouyang et al., NeurIPS 2022.

Optimal control is about 1) modeling part of the world and 2) interacting with that model

language preferences



Ongoing and future directions in ML+control

Modeling and controlling isolated systems is relatively well-understood
Challenge: understanding and interacting with other parts of the world

Use language to specify tasks, goals, actions
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📚 RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.
📚 VIMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023

📚 VIMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023
📚 RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.



Ongoing and future directions in ML+control

Modeling and controlling isolated systems is relatively well-understood
Challenge: understanding and interacting with other parts of the world

Use language to specify tasks, goals, actions

Brandon Amos On optimal control and machine learning

📚 VIMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023
📚 RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.

📚 TAMOLS: Terrain-Aware Motion Optimization for Legged Systems. Jenelten et al., Transactions on Robotics, 2022.
📚 Vision-only robot navigation in a neural radiance world. Adamkiewicz et al., IEEE Robotics and Automation Letters 2022.
📚 SNeRL: Semantic-aware Neural Radiance Fields for Reinforcement Learning. Shim*, Lee*, and Kim, ICML 2023.
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Incorporating non-trivial geometries and terrains



Ongoing and future directions in ML+control

Modeling and controlling isolated systems is relatively well-understood
Challenge: understanding and interacting with other parts of the world

Use language to specify tasks, goals, actions
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📚 VIMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023
📚 RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.

📚 Objective Mismatch in Model-based Reinforcement Learning. Lambert et al., L4DC 2020.
📚 Temporal Difference Learning for Model Predictive Control. Hansen et al., ICML 2022.
📚 Learning Control-Oriented Dynamical Structure from Data. Richards et al., ICML 2023.
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Learning control-aware dynamics (task-oriented, decision-focused)

📚 TAMOLS: Terrain-Aware Motion Optimization for Legged Systems. Jenelten et al., Transactions on Robotics, 2022.
📚 Vision-only robot navigation in a neural radiance world. Adamkiewicz et al., IEEE Robotics and Automation Letters 2022.
📚 SNeRL: Semantic-aware Neural Radiance Fields for Reinforcement Learning. Shim*, Lee*, and Kim, ICML 2023.

Incorporating non-trivial geometries and terrains



Ongoing and future directions in ML+control

Modeling and controlling isolated systems is relatively well-understood
Challenge: understanding and interacting with other parts of the world

Use language to specify tasks, goals, actions
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📚 VIMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023
📚 RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.

📚 Objective Mismatch in Model-based Reinforcement Learning. Lambert et al., L4DC 2020.
📚 Temporal Difference Learning for Model Predictive Control. Hansen et al., ICML 2022.
📚 Learning Control-Oriented Dynamical Structure from Data. Richards et al., ICML 2023.
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Learning control-aware dynamics (task-oriented, decision-focused)

📚 TAMOLS: Terrain-Aware Motion Optimization for Legged Systems. Jenelten et al., Transactions on Robotics, 2022.
📚 Vision-only robot navigation in a neural radiance world. Adamkiewicz et al., IEEE Robotics and Automation Letters 2022.
📚 SNeRL: Semantic-aware Neural Radiance Fields for Reinforcement Learning. Shim*, Lee*, and Kim, ICML 2023.

Incorporating non-trivial geometries and terrains

📚 Nocturne: a driving benchmark for multi-agent learning.
    Vinitsky et al., NeurIPS Datasets and Benchmarks 2022Multi-agent control and game theory



Optimal control and societal challenges
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This talk: machine learning ⇄ optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning
+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)
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