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A Disclaimer

This is an introduction to optimal control for machine learning researchers
* Perspective: a starting map of ideas rather than a comprehensive coverage
« Atourthrough some of my favorite ideas, foundations, and recent papers
* Will emphasize the engineering side — concepts most useful for building systems

Focus also on continuous control, but many concepts transfer to discrete settings

Brandon Amos On optimal control and machine learning



What is optimal control?

[Optimal control is about 1) modeling part of the world and 2) interacting with that model ]
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The brachistochrone problem

Johann Bernoulli, 1696

[Optimal control is about 1) modleling part of the world and 2) interalcting with that model

H

ball rolling down a ramp shape of the ramp

B fastest ramp
B slower ramps

\ /
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Source code examples in Dymos and APMonitor



https://en.wikipedia.org/wiki/Brachistochrone_curve
https://openmdao.github.io/dymos/examples/brachistochrone/brachistochrone.html
https://apmonitor.com/wiki/index.php/Apps/BrachistochroneProblem

Optimal controlin robotics

[Optimal control is about 1) modeling part of the world and 2) interacting with that model ]

¥

actuators

e.g., the Newton-Euler equations of motion
M(qe)q: + n(qe ) = 7(q:) + Bu,

e.g., torques on the joints, thrusters,

the robotic SyStem steering, acceleration, braking

o B — " 3
MM A ®® #: 7 .. . ]

1

= B 5 L 3
_, : . ’1

.

E

Source: Boston Dynamics
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https://www.youtube.com/watch?v=fn3KWM1kuAw

Optimal controlin robotics

[Optimal control is about 1) modeling part of the world and 2) interacting with that model ]

+

actuators

e.g., the Newton-Euler equations of motion
M(qe)q: + n(qe ) = 7(q:) + Bu,

e.g., torques on the joints, thrusters,

the robotic SyStem steering, acceleration, braking

Source

€& | earning Agile and Dynamic Motor Skills for Legged Robots. Hwangbo et al., Science Robotics 2019.
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https://www.youtube.com/watch?v=ITfBKjBH46E

Optimal controlin robotics

[Optimal control is about 1) modeling part of the world and 2) interacting with that model ]

¥

actuators

e.g., the Newton-Euler equations of motion
M(qe)q: + n(qe ) = 7(q:) + Bu,

e.g., torques on the joints, thrusters,

the robotic SyStem steering, acceleration, braking

Stairs on a hking path s Vel b s

o

€& RMA: Rapid Motor Adaptation for Legged Robots. Ashish Kumar et al., RSS 2021.
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https://www.youtube.com/watch?v=tpFQR_HUYss

e.g., the Newton-Euler equations of motion
M(q:)q; + n(qs, 4¢) = t(q;) + Bu,

e.g., torques on the joints, thrusters,

actuators steering, acceleration, braking

the robotic system

€ Advanced skills through multiple adversarial motion priors in reinforcement learning. Vollenweider et al., ICRA 2023.
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https://www.youtube.com/watch?v=kEdr0ARq48A

Optimal controlin robotics

controls

[Optimal control is about 1) modeling part of the world and 2) interacting with that model ]

¥

actuators

e.g., the Newton-Euler equations of motion
M(q:)q; + n(qs, 4¢) = t(q;) + Bu,

e.g., torques on the joints, thrusters,

the robotic SyStem steering, acceleration, braking

Source: Shadow Roboti@s
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https://www.youtube.com/watch?v=xyqJ6_cdenI

Optimal control in robotics ke

[Optimal controlis about 1) modleling part of the world and 2) interalcting with that model ]
v

actuators

e.g., the Newton-Euler equations of motion
M(q.)q; + n(qs, 4) = 1(qe) + Bu,

e.g., torques on the joints, thrusters,
steering, acceleration, braking

. v
the robotic system

2018-05-05 12:40 InSight

0.0km/s 120,897,808km

A Hohmann transfer orbit. See also:
€& Dynamical Systems, the Three-Body Problem and Space Mission Design. Koon et al., 1999.


https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif

Optimal controlin robotics

Optimal control is about 1) modeling part of the world and 2) interacting with that model

e.g., the Newton-Euler equations of motion
M(q:)q; + n(qs, 4¢) = t(q;) + Bu,

e.g., torques on the joints, thrusters,

actuators steering, acceleration, braking

the robotic system

Source: SpaceX

€ Convex Programming Approach to Powered Descent Guidance for Mars Landing. Agikmese and Ploen, 2007.
€ Vinimum-landing-error powered-descent guidance for Mars landing using convex optimization. Blackmore et al., 2010. 11
€ | ossless Convexification of Nonconvex Control Bound and Pointing Constraints of the Soft Landing Optimal Control Problem. Acikmese et al., 2013.


https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif

Optimal controlin robotics

[Optimal control is about 1) modleling part of the world and 2) interalcting with that model ]
v

actuators

e.g., the Newton-Euler equations of motion
M(q.)q; + n(qs, 4) = 1(qe) + Bu,

e.g., torques on the joints, thrusters,

v
the robotic SyStem steering, acceleration, braking

Source: Waymo

12


https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif
https://www.youtube.com/watch?v=ospoTAyEdDQ

Optimal controlin robotics

[Optimal control is about 1) modleling part of the world and 2) interalcting with that model ]
v

actuators

e.g., the Newton-Euler equations of motion
M(q.)q; + n(qs, 4) = 1(qe) + Bu,

e.g., torques on the joints, thrusters,

v
the robotic SyStem steering, acceleration, braking

€& | earning high-speed flight in the wild. Loquercio et al., Science Robotics 2021. 13


https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif
https://www.youtube.com/watch?v=m89bNn6RFoQ

Where does machine learning fit in?

[Optimal control is about 1) modeling part of the world and 2) interacting with that model ]

.

&g

state

=
=
= controls
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[Machine learning (ML) is about using data to 1) create abstractions, and 2) make predictions ]
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e.g., RL from human feedback for language models

Brandon Amos On optimal control and machine learning
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This talk: machine learning 2 optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning

+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)

Brandon Amos On optimal control and machine learning
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How do we (passively) model the world?

4 . ) ) ) A
Mechanics is the paradise of the mathematical sciences,

because by means of it one comes to the fruits of mathematics.
da Vinci (1459-1519), Notebooks, v. 1, ch. 20.)

L

€ Quote also given at the beginning of Geometric Control of Mechanical Systems, Bullo and Lewis, 2000.

1. Make observations 2. Come up with a theory

ource —— Continuous time Discrete time
(@) o
o xe = f(xe)
R
=
£ o ! Xep1 = f(xe)
Q
- [
- 0O e.g.,differential equations (ODE/PDESs) e.g., Turing machines, games
o g dre = fG)dt +FO)dBe |y = fx,we)
: : — : P we ~ p(w)
€& | earning Neural Event Functions for Ordinary Differential Equations. O
Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel, ICLR 2021. o
5 ' e.g., Markov chains
e.g., stochastic differential equations

Brandon Amos On optimal control and machine learning 16


https://www.youtube.com/watch?v=eakKfY5aHmY
https://en.wikipedia.org/wiki/Orbital_mechanics

Machine learning way of learning dynamics

1. Collect data of the system 2. Throw neural networks at it

Continuous time . .
a neural network Discrete time
. _ /
) Xe = fo(x¢)
-
R7} a neural network
: —
= o 1 Xer1 = fo(x¢)
e
.Id-; “NVIDIA N | ODEs/PDE l e.g., RNNs, LSTMs, Transformers
a — e.g- Neural ODEs/ Aliak operators/ ‘ for language and other discrete-time sequential data

€ FourCastNet, Pathak et al., 2022. & [earning Neural Constitutive Laws. Ma et al., ICML 2023.

dxe = fe\(xt)dt +;70 (x¢)dB; \ >

W
.; :

g neural networks /'\ Xt+1 fB (xtr Wt) .

~ neural networks

£ / W ~ Pg(W) e

(&

o

A

e.g., RNNs with stochastic states
e.g., Neural SDEs, diffusion models, flow matching €& A Recurrent Latent Variable Model for Sequential Data. Chung et al., NeurlPS 2015.
€ Deep unsupervised learning using nonequilibrium thermodynamics. Sohl-Dickstein et al., ICML 2015. ® Sequential Neural Models with Stochastic Layers. Fraccaro et al., NeurlPS 2016.

€ Score-Based Generative Modeling through Stochastic Differential Equations. Song et al., ICLR 2021.
€ Flow Matching for Generative Modeling. Lipman et al., ICLR 2023.
€ Stochastic Interpolants. Albergo et al., ICLR 2023.

Brandon Amos On optimal control and machine learning 17


https://www.youtube.com/watch?v=nuT_U1AQz3g

Adding interactions — controlled dynamics

/.’/‘—‘:}

state

\ g

controls

Continuous time Discrete time
(©)
@ Xe = f(xpfue)
C
g f i Xev1 = feefug)
3 0 1
Q
=
_'L__)) d‘xt = f(xt,@)dt + F(xt, ut}dBt xt+1 = f(xt! ut Wt)
m —
© we ~ p(w)
(®)
S
(¥p)]
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This talk: machine learning 2 optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning

+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)

Brandon Amos On optimal control and machine learning
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Formulating basic optimal control problems

*Can add many more constraints/variations

[Optimal control is about 1) modeling part of the world and 2) interacting with that model ]

Deterministic

Continuous time

H

Discrete time

H-1
min Cy(xy) +j cy (g, Ug) P \ :
u _ min Cy(xy) + Ce(Xe, U
: . s _ o 1 (xy) e (X, ue)
subjectto x = f(x¢, up), Xo given t=0

subjectto x;y1 = f(xg, up), Xo given

Stochastic

Brandon Amos

H
min E {CH(xH) + j ce(xt, ut)}
t=0
subjectto dx; = f(x¢, up)dt + F(xg, up)dB;

Xo glven

H-1
\_/ min IE{CH(xH) + Z ce (x¢, ut)}
t=0

Ug:H-1

subjectto xpyq = O, g, we), we~ p(w)
Xo given

On optimal control and machine learning 20



Solving optimal control problems
&t at Stanford

Home

Homework

Project

AA 203: Optimal and Learning-Based Control

Model-free RL

Model-based RL

A 4

Spring 2023
Control > {\daptlve
optimal control
! ] "

Feedback control Adaptive control

Optimal and

learning control
I
| y
Open-loop MPC N Closed-loop

Indirect Direct I;P
methods methods

Brandon Amos

HJB / HJI

On optimal control and machine learning

Instructors

Daniele Gammelli
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Analyzing controllers

A =" at Stanford Home  Homework  Project

AA 203: Optimal and Learning-Based Control

Spring 2023

Traditional feedback control balances the following desiderata.

Stability The system output does not diverge or “blow up”.
Tracking The system output converges to a desired reference.
Disturbance rejection The system is insensitive to disturbances and noise.

Robustness The controller performs well despite some model misspecification.

Brandon Amos On optimal control and machine learning

Instructors

Daniele Gammelli
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Analyzing controllers

A =" at Stanford Home  Homework  Project

AA 203: Optimal and Learning-Based Control

Spring 2023

This course also incorporates and focuses on the following objectives.

Performance The controller achieves an optimal trade-off between various metrics.

Constraints The controller does not cause the system to violate safety restrictions or inherent
(e.g., physical) limitations.

Planning An appropriate reference trajectory is computed and given to the controller for
tracking.

Learning The controller can adapt to an unknown or time-varying system.

Brandon Amos On optimal control and machine learning

Instructors

Daniele Gammelli
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Other optimal control courses & books

Adaptive and nonlinear control, Maxim Raginsky [UIUC ECE 517]

SDEs in Optimization, Control, and Learning, Maxim Raginsky [UIUC ECE 586]

Robotic manipulation, Russ Tedrake [MIT 6.4210]

Underactuated robotics, Russ Tedrake [MIT 6.8210]

Optimal control, Zac Manchester [CMU 16-745]

Optimal and Learning-Based Control, Spencer M. Richards and Daniele Gammelli [Stanford AA 203]

Sk W=

Practical Methods Applied Opﬁmul Control

for Optimal Control
and Estimation Using

... and many others

DonaLD E. KIrRk

An Introduction to Trajectory Nonlinear Programming ARTHUR E. BRYSON, Jr
Optimization: How to Do Your ' YU-CHI HO

Own Direct Collocation* O PTI MAL SECOND EDlT'i)N
| CONTROL —
THEORY

AN INTRODUCTION

Optimal Control Theory

Emanuel Todorov

University of California San Diego

Brandon Amos On optimal control and machine learning 24


https://maxim.ece.illinois.edu/teaching/fall22/index.html
%7Bhttp:/maxim.ece.illinois.edu/teaching/spring23/index.html
https://manipulation.csail.mit.edu/
https://underactuated.csail.mit.edu/
https://www.youtube.com/playlist?list=PLZnJoM76RM6Iaf59ICcU9-DzztGZvK_52
https://stanfordasl.github.io/aa203/
https://www.cs.cmu.edu/~cga/dynopt/description.html

Brandon Amos

Optimal control as a function

X,Ct, Cp, [ =P

(no learning yet, all optimization)

-

\_

H-1

argmin Cy(xy) + Ce(Xe, Ut)
Ug:H-1 t=0

subjectto x;.1 = f(xg, ug)

~

—» 17(x; ¢, Cy, f)

J

On optimal control and machine learning
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Where does machine learning fit in?

0
differentiable control of m(x)

( cost learning \

. H-1
value learning
argmin Cy(xy) + e (X, Ut)
X, C¢, Ch,f —> Uo:H-1 t=0

subjectto x;.1 = f(xg, ug)

\ dynamics learning )

’ T[(X; Ct, CH} f)
policy learning
(amortized optimization)

Reinforcement learning (/approximate dynamic programming)
usually value and policy learning, especially when f is unknown

Brandon Amos On optimal control and machine learning 26



Markov decision processes and RL

V(o)

A Markov decision process (MDP) is a stochastic control process:  {~ A_ AN '7'2 """""""
« State space X, control spaceU - To ™1 2
* Transition dynamics f(x, u) 4% SERVAL) CHNYAR S
* Reward function r(x, u) f f

Zo T T2 —p
A policy m: X’ — U maps a state to a reward. T T /
Goal: find the optimal policy to maximize the value A 4 A 4

Uo ui U2

Brandon Amos On optimal control and machine learning 27



Comparing the MDP to optimal control

MDPs focus strongly on infinite horizon/time-invariant policies 7 (x)
* May not exist for all OC problems

MDPs usually more difficult to add constraints/extra terms to

* E.g., goal conditioning or time-varying constraints

Optimal control (open-loop) MDP policies (and closed loop control)
. e N e —
u(t) B n(x)/ ~ 4 Rl NN

-7 AN
H PN A
muinj lx; — B||? / / f /
subject to xt==0f(xt,ut), xo = A min Q(x,mg(x))

€ An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation. Matthew Kelley, SIAM Review, 2017.

e

Brandon Amos On optimal control and machine learning
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Repeatedly optimizing for computing a policy

m(x) = argmax{Q(x,u) = r(x,u) + EV(x")}

ry X2 X3 Ty I Xg 7 Xg T9 X100 T11 T12

e \ 7 (xe) 7(%12)

value

action action action

Brandon Amos On optimal control and machine learning
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Policy learning and amortized optimization

€& Continuous control with deep reinforcement learning. Lillicrap et al., ICLR 2016.
€& | earning Continuous Control Policies by Stochastic Value Gradient. Heess et al., NeurlPS 2015.

€& Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Independently solve Learn a policy to predict the solution

m(x) = argmax Q (X, u) we— argmax Ep ) Q(x, 7 (x))

p(x)

ry X2 X3 Ty I5 g 7 X8 T9 X110 L11 T12

Deterministic Policy Stochastic Policy

Brandon Amos On optimal control and machine learning 30



Further reading on amortized optimization

Foundations and Trends® in
Machine Learning
16:5

Brandon Amos

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport)

On optimal control and machine learning 31




Model-based stochastic value gradients

€& | earning Continuous Control Policies by Stochastic Value Gradient. Heess et al., NeurlPS 2015.
€ Imagined value gradients. Byravan et al., CoRL 2020.
€ 0n the model-based stochastic value gradient for continuous reinforcement. B. Amos et al., L4DC 2021.

“/cost learning
‘*/\)alue learning H-1
argmin Cy(xy) + ce(xe, up)
Uo:H-1 t=0

subjectto x;.1 = f(xs, ug)

* &/ dynamics learning

mt(x; ¢, Cy, f)

ehfpolicy learning

Brandon Amos On optimal control and machine learning 32



Diffusion for control and RL

€ Planning with Diffusion for Flexible Behavior Synthesis. Janner*, Du*, et al., ICML 2022.
€ |5 Conditional Generative Modeling all you need for Decision-Making? Ajay*, Du* et al., ICML 2023.

Predicting 1) dynamics, 2) rewards, and 3) optimal trajectories/policies

—
constraints Decision Diffuser satisfy
constraints
skills @ compose
R skills
ton
u 3 trajec
\abe“e
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Reinforcement learning topics

CS 285 at UC Berkeley

Deep Reinforcement Learning

Instructor Sergey Levine

svlevine@eecs.berkeley.edu

Office Hours: After lecture

control (e.g., LQR)

[probabilistic inference] [ imitation learning learning-based control [ model-based }

¥
[ inverse RL ]

)/ 4 N

[ control as inference h reinforcement learning
. J
( N\
P s N model-based RL
[ . “classic” model-free RL w/o policy
exploration . N
algorithms 1
g J
4 ™\
N model-based RL
P S L w/ policy )
unsupervised RL i di value-based
policy gradients § methods
actor-critic
y 4 > N\

advanced PG deep Q-learning
(TRPO, PPO) [ Q-function actor- }/\ -

critic (e.g., SAC)
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Control & reinforcement learning resources

1. A Tour of Reinforcement Learning: The View from Continuous Control. Benjamin Recht, 2019.
2. Deep Reinforcement Learning. Sergey Levine. [Berkeley CS 285]

3. Reinforcement learning. David Silver [UCL]

4. Deep Reinforcement Learning. Katerina Fragkiadaki [CMU 10-703]

Dynamic Programming

_ and Optimal Control
Algorlthms {o]3 , | APPROXIMATE DYNAMIC PROGRAMMING

. = Reinforcement
Re|nf0 rcement Markov Decision Processes | Biimisip Bertsskas ]
Learning ) : : Learning
B Reinforcement Learning s
and Optimal Control B e

/

— e MARTIN L. PUTERMAN Dimitri P. Bertsekas _ ,/
Csaba Szepesvari Richard S. Sutton and Andrew G. Barto /
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https://rail.eecs.berkeley.edu/deeprlcourse/
https://www.davidsilver.uk/teaching/
https://cmudeeprl.github.io/703website_f20/

This talk: machine learning 2 optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning

+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)

Brandon Amos On optimal control and machine learning
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Controllers don’t live in isolation

We can often measure the downstream performance induced by the controller
Idea: optimize (i.e., tune/learn) the parameters for a downstream performance metric
Controller-design loop is not a new idea and has been extensively used over the past century

78\

n n controller parameters

(design space of cost and model)
solve control optimization problem

( )
cost initial state dynamics constraints

* * .
X171, Uy € Argmin z Co(xp, ue) St X1 = Xijpit| o1 = fo(Xe, Ue) | ue €U
X1.T>U1:T t

Full notation: ui.r (xjnit, 6)

def

g (x) & ui(x, 9)] execute control policy on the system

J(mg) |measure downstream performance of the controller




Differentiate the controller!

We can often measure the downstream performance induced by the controller
Idea: optimize (i.e., tune/learn) the parameters for a downstream performance metric

by differentiating through the control optimization problem

/ﬁ\

controller parameters
(design space of cost and model)

solve control optimization problem

differentiable control

Vod (mg)

or Dg (g (x))

X1.7,Ul.7 € argmin
X1:T,U1:T

2.

t

cost

Co(x¢, ug)

s.t.

initial state

dynamics

constraints

X1 = Xinijt

Xer1 = fo(xe, ue)

u; € U

N

Full notation: uj.r (xjnit, &)

g (x) & ui(x, 9)] execute control policy on the system

measure downstream performance of the controller



Derivatives in RL and control

The policy (or value) gradient Differentiable control

Derivative of value w.r.t. a parameterized policy: Derivative of actions w.r.t. controller parameters:
VoEyx, [Q(xs mo(xe))] duy.r(6)/06

For policy learning via amortized optimization Controller induces a model-based policy

@-value can be model-based or model-free Lo g _ u*(6)

Works for deterministic and stochastic policies

0.8
0.6
0.4

0.2 -

0.0"

Each vertical slice is a control problem



How to differentiate the controller?

€ Differentiable MPC. Amos et al., NeurlPS 2018; Differentiable convex optimization layers. Agrawal*, Amos*, et al., NeurIPS 2019;
The differentiable cross-entropy method. ICML 2020; Learning Convex Optimization Control Policies, Agrawal* et al., L4DC 2020.

Unrolling or autograd Implicit differentiation
'&O—>ﬂ1—>—>ﬁK—>ﬁ9(x)—> * * -1 *
0 w Dou*(6) = —D,g(6,u*(8)) Dgg(0,u*(8))
Idea: Implement controller, let autodiff do the rest Idea: Differentiate controller’s optimality conditions

Like MAML’s unrolled gradient descent

Agnostic of the control algorithm
Ideal when unconstrained with a short horizon Ill-defined if controller gives suboptimal solution
Does not require a fixed-point or optimal solution Memory and compute efficient: free in some cases
Instable and resource-intensive for large horizons

Can unroll algorithms beyond gradient descent
The differentiable cross-entropy method

Brandon Amos Differentiable optimization for control and RL 40



End-to-end model learning starting references

...among many others!

Using a Financial Training Criterion
Rather than a Prediction Criterion’

Yoshua Bengio’

Gnu-RL: A Precocial Reinforcement Learning Solution for
Building HVAC Control Using a Differentiable MPC Policy

Bingqing Chen Zicheng Cai Mario Bergés
Carnegie Mellon University Dell Technologies Carnegie Mellon University
Pittsburgh, PA, USA Austin, TX, USA Pittsburgh, PA, USA
bingginc@andrew.cmu.edu zicheng.cai@dell.com mberges@andrew.cmu.edu

Smart “Predict, then Optimize”

Adam N. Elmachtoub
Department of Industrial Engineering and Operations Research and Data Science Institute, Columbia University, New York,
NY 10027, adam@jieor.columbia.edu

Paul Grigas

Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720,
pgrigas@berkeley.edu

Task-based End-to-end Model Learning
in Stochastic Optimization

Priya L. Donti Brandon Amos J. Zico Kolter
Dept. of Computer Science Dept. of Computer Science ~ Dept. of Computer Science
Dept. of Engr. & Public Policy = Carnegie Mellon University = Carnegie Mellon University
Carnegie Mellon University Pittsburgh, PA 15213 Pittsburgh, PA 15213
Pittsburgh, PA 15213 bamos@cs.cmu.edu zkolter@cs.cmu.edu

pdonti@cs.cmu.edu

Learning Convex Optimization Control Policies

Akshay Agrawal AKSHAYKA @CS.STANFORD.EDU
Shane Barratt SBARRATT @ STANFORD.EDU
Stephen Boyd BOYD @STANFORD.EDU

450 Serra Mall, Stanford, CA, 94305

Bartolomeo Stellato* STELLATO @MIT.EDU
77 Massachusetts Ave, Cambridge, MA, 02139

Brandon Amos Differentiable optimization for control and RL 41



This talk: machine learning 2 optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning

+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)

Brandon Amos On optimal control and machine learning
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Euclidean distance as optimal control

€ 0n the relation between optimal transport and Schrédinger bridges: A stochastic control viewpoint. Chen et al., 2016. (Section 11.B)

lzo — z1])* = mln/ |us||°dt  subject to &, = wus, o, %1 given

B Optimal solution
Suboptimal trajectories

Brandon Amos On optimal control and machine learning
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Optimal control for optimal transport

€ 0On the relation between optimal transport and Schrédinger bridges: A stochastic control viewpoint. Chen et al., 2016

(Entropic) optimal transport path

Euclidean path stochastic optimal control between two measures
Optlmal co ntrOI between tWO pOIﬂtS GMM (forward policy) S-tunnel (forward policy) V-neck (forward policy)

7

M Optimal solution
Suboptimal trajectories

—

1
llzo — z1||? = 11}112]:.’1/ |lug||?dt  subject to &, =us, xo, 1 given
tybt Jo

£ ,//
€ Deep Generalized Schrédinger Bridge. Liu et al., NeurlPS 2022.

Score-basec_i_c_i_e_n_e_faziii!/_e Model (sGm) Schrédinger Bridge (SB)
dX,=[f | Jdt + gdW, gtoc;halsgc Opﬁnt’?l dX, = [f+g’V,log U] dt + gdW, Optimal Transport in Learning,
———————————— ontrol Perspective 5
Data (%) emmmm=? (k1) Noise \ / Data (Xg) emmmmmy (k1) Noise Control, and Dynamical Systems
o - : Control-affine SDEs coz-mmso-- - n
X, = [f 8" Vodogpi}dt + gdW: (1 ¥ dX, = |f g’ Vilog | dt + gaW, ICML Tutorial 2023
Log-likelihood FBSDEs Theory o )
\ Objective (3) 'EC———h (Theorem 3 & 4) 4w PDEs Optimality (6)/ Charlotte Bunne Marcziuwﬂ
ETHzurich
€ | ikelihood Training of Schrédinger Bridge using Forward-Backward SDEs Theory. Chen*, Liu*, and Theodorou, ICLR 2022.
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Optimal control+RL for solving QPs

€ Accelerating quadratic optimization with reinforcement learning. Ichnowski et al., NeurlPS 2021.

[Optimal control is about 1)

modeling part of the world and 2) interacting with that model

J

Brandon Amos

v v

Solving a quadratic program

RLQP

Reinforcement Learning QP Solver

Agent : Environment
patioy #( ) (QP Solver)

ADMM
iterations

parameters ¢

g 7
s l»' i =y
| reward r = — 1 |

state s = (x, ¥z, 5 rimal® S:dual)

On optimal control and machine learning

Solver parameters during training
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Reinforcement learning from human feedback

€& Deep reinforcement learning from human preferences. Christiano et al., NeurlPS 2017; Fine-tuning language models from human preferences. Ziegler et al., 2019. Learning
to summarize with human feedback. Stiennon et al., NeurlPS 2020. Training language models to follow instructions with human feedback. Ouyang et al., NeurlPS 2022.

[Optimal control is about 1) modeling part of the world and 2) interacting with that model ]

| |
v
language preferences a language model

l l Reinforcement Learning
== from Human Feedback

Initial Language Model Model (RL Policy)
00+ VeJ(0)

Reward (Preference)

Nathan Lambert, Hugging Face
Dmitry Ustalov, Toloka

i >
— kL DKL (Tppo (y]2) || Thase ()
KL prediction shift penalty

4 International Conference on Machine Learning
24 July 2023
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Ongoing and future directions in ML+control

Modeling and controlling isolated systems is relatively well-understood On the role of Large
Challenge: understanding and interacting with other parts of the world Language Models in Planning
O\ Slides @
. ] &0*&\% <R Subbarao Kambhampati ERE 46
Use language to specify tasks, goals, actions W@ e i v et e ,;&%
o rizona State ekl
€ \IMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023 i [ e E—
€& RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.

Follow this motion for & :

@ Sweep all = into without exceeding
Bob Prompt Multi-Agent Dialog LLM-Generated Motion-Planning in < L ) - S
§ for Collaboration §3.1 Subtask Plan §3.2 Robot Joint Space §3.3 &
Alice Prompt J P e
You are Alice, Iam Alice, I have picked up ]
pack grocery with Bob... banana. I can [proposal]
[Task Context]

- Previously ... [History]

1 Bob, I have the bread...
- You can ... [Capability] e L L)

Let’s [proposal]

: . - Respond ...
[Dialog Instruction]
Sounds good, let’s proceed:
© -You see ... pl ]

& 5 an summary

3 2 [Env. Observation] P ;

‘ o I Your response: E Alice [subtask] [task space waypoint] Alice [joint space trajectory] o=

Bob [subtask] [task space waypoint] Bob [joint space trajectory] * e = P2 - —
8 - - .- B -

< Plan Feedback | o 4,
<@ [Collision]: at step ... [IK]: ... Execute ‘ ‘

€ RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023. —

€ VIMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023
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Ongoing and future directions in ML+control

5 [ NeRF
<
R

o “am
Use language to specify tasks, goals, actions g Ag%mm

Multi-view Image

Modeling and controlling isolated systems is relatively well-understood
Challenge: understanding and interacting with other parts of the world

€ \IMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023
€& RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.

pa—)

Incorporating non-trivial geometries and terrains ) {_Semente o |

€& TAMOLS: Terrain-Aware Motion Optimization for Legged Systems. Jenelten et al., Transactions on Robotics, 2022.
€ Vision-only robot navigation in a neural radiance world. Adamkiewicz et al., IEEE Robotics and Automation Letters 2022.

& SNeRL: Semantic-aware Neural Radiance Fields for Reinforcement Learning. Shim*, Lee*, and Kim, ICML 2023.
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Ongoing and future directions in ML+control

Modeling and controlling isolated systems is relatively well-understood
Challenge: understanding and interacting with other parts of the world

Use language to specify tasks, goals, actions

€ \IMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023
€& RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.

Incorporating non-trivial geometries and terrains

€& TAMOLS: Terrain-Aware Motion Optimization for Legged Systems. Jenelten et al., Transactions on Robotics, 2022.
€ yision-only robot navigation in a neural radiance world. Adamkiewicz et al., IEEE Robotics and Automation Letters 2022.

TD-MPC ‘ L
& SNeRL: Semantic-aware Neural Radiance Fields for Reinforcement Learning. Shim*, Lee*, and Kim, ICML 2023. a8 V-l
ewar alue

=0 Q>

Action

Observation

Learning control-aware dynamics (task-oriented, decision-focused) '
\ —
A

€& Objective Mismatch in Model-based Reinforcement Learning. Lambert et al., L4DC 2020.
€& Temporal Difference Learning for Model Predictive Control. Hansen et al., ICML 2022.

€& | earning Control-Oriented Dynamical Structure from Data. Richards et al., ICML 2023. Leamet odel

¥ <«— g =
Reward

Environment
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Ongoing and future directions in ML+control

Modeling and controlling isolated systems is relatively well-understood
Challenge: understanding and interacting with other parts of the world

Use language to specify tasks, goals, actions

€ \IMA: General Robot Manipulation with Multimodal Prompts. Jiang et al., ICML 2023
€& RoCo: Dialectic Multi-Robot Collaboration with Large Language Models. Zhao et al., 2023.

Incorporating non-trivial geometries and terrains

€& TAMOLS: Terrain-Aware Motion Optimization for Legged Systems. Jenelten et al., Transactions on Robotics, 2022.
€ Vision-only robot navigation in a neural radiance world. Adamkiewicz et al., IEEE Robotics and Automation Letters 20

& SNeRL: Semantic-aware Neural Radiance Fields for Reinforcement Learning. Shim*, Lee*, and Kim, ICML 2023. 4 A U N t 3
AL WA A LAY

o
LD S\
iR R ORY

Learning control-aware dynamics (task-oriented, decision-focused)

€& Objective Mismatch in Model-based Reinforcement Learning. Lambert et al., L4DC 2020.
€& Temporal Difference Learning for Model Predictive Control. Hansen et al., ICML 2022.
€& | earning Control-Oriented Dynamical Structure from Data. Richards et al., ICML 2023.

-
=®

-

-

-

-

-

€ Nocturne: a driving benchmark for multi-agent learning.

Multi_agent Control a nd game theory Vinitsky et al., NeurIPS Datasets and Benchmarks 2022
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Optimal control and societal challenges

Control Systems
Society"

An |EEE Control Systems Initiative

=\

| CONTROL FOR

= \

ROAD MAP

Anuradha M. Annaswamy
Karl H. Johansson | George J. Pappas
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This talk: machine learning 2 optimal control

1. Modeling and learning dynamics

2. Machine learning for optimal control
+ Reinforcement learning (policy, value, and model learning)
+ Differentiable control

3. Optimal control for machine learning

+ Perspective on diffusion and optimal transport models
+ RL-based updates for machine learning models (e.g., RLHF)

Brandon Amos On optimal control and machine learning
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On optimal control and machine learning
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