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Optimization is crucial technology

Optimization is a modeling and decision-making paradigm and encodes reasoning operations
Finds the best way to interact with a representation of the world

Focus: parametric optimization problems that are repeatedly solved

optimal solution objecti\I/e context (or parameterization)
| |
* . .
y*(x) € argmin f (y; x)

e

optimization variable constraints

vertical slices are optimization problems
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Breakthroughs enabled by optimization include

1. controlling systems (robotic, autonomous, mechanical, and multi-agent)

optimal solution objecti\I/e context (or parameterization)
I I
* . .
y*(x) € argmin f (y; x)

b

optimization variable constraints
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Breakthroughs enabled by optimization include

1. controlling systems (robotic, autonomous, mechanical, and multi-agent)
2. making operational decisions based on future predictions
3. efficiently transporting or matching resources, information, and measures
4. allocating budgets and portfolios
5. designing materials, molecules, and other structures
6. solvinginverse problems (to infer underlying hidden costs, incentives, geometries, terrains)
7. parameter learning of predictive and statistical models

optimallsolution objecti\I/e clontext (or parameterization) .

y*(x) € argmin f(y; x) y :

b

optimization variable constraints

T
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When optimization fails, machine learning helps
y*(x) € argmin f(y; x)
YEC(x)

Bad representation of the world (unknown, mis-specified, or inaccurate)
Solving is computationally difficult

When machine learning fails, optimization helps

Optimization provides an internal reasoning operation

3 Model [ 2 =)
Domain knowledge: matrix operations, convolutions, activation
functions, transformers, attention mechanisms
This talk: optimization-based domain knowledge
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This talk: integrating optimization and learning

Key: view optimization as a function from the context x to the solution y*(x) € argmin f(y; x)
yeC(x)

fly; )8
Differentiable optimization — —y *(x) ”. y*(z)

Task-based optimization
Foundations: convex quadratic and cone programs

Applications . I '
: i

Amortized optimization — V,5(x) = y*(x)
RL as amortized optimization o ()
Foundations: modeling and loss choices Yy
Applications

Amortization via learning latent subspaces
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Demand prediction and scheduling

Electricity generation schedule
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Predicted electricity demands

o

-----
-------

* “
< o,
d -
ol
a
E
o a
* “aa
- ..
* -
<
Y

-
-

z*(x,y) € argmin f(z; x,y)

........

Pastdemand, ' T Future demand Z€C(xY)
weather, time (w/ uncertainty)
=x =y
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Using predictions for scheduling

Stage 1: maximum likelihood training
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Past demand, Future demand
weather, time (w/ uncertainty)
=X =y

Stage 2: deploy within a larger system

- - - ,

z*(x,y) € argmin f(z; x,y)
ZeC(x,y)
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Using predictions for scheduling

Stage 1: maximum likelihood training

—

—

-

max-likelihood model # best model for the task
Why? Modeling errors impact tasks in different ways
Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurlPS 2017.

Objective mismatch in model-based reinforcement learning. Lambert, Amos, Yadan, and Calandra, L4DC 2020.

Stage 2: deploy within a larger system

-

-

—

z*(x,y) € argmin f(z; x,y)
ZeC(x,y)
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Idea: improve the model with the task loss

Stage 1: maximum likelihood training
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Stage 2: deploy within a larger system. Improve the model with the task information ,

Vo fNL1,: standard backpropagation

/Z*(X, y) € argmin f(z; x,y)

Z€C(x,y)

Vo task: differentiates through an optimization problem
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Incorporating the task loss is crucial

Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurlPS 2017.

negative log-likelihood task-based generation loss
014 . N TN . | | ‘ H,}I'li
oo L B train with maximum likelihood
006 I +task loss

004 =% USRS S S
0 4 s 12 16 20 24 0 4 8 12 16 20 24
hour of day hour of day
ﬁ : z*(x,y) € argmin f(z; x,y)
R £F L z€C(x,y)

Future demand
weather, time (w/ uncertainty)
=X =y

Past demand,

Brandon Amos Learning with differentiable and amortized optimization 11



How to differentiate an optimization problem?

@ask: differentiates through an optimization pr@ 29 -
() °® o
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Differentiable optimization layers

Definition. A differentiable optimization layer for a machine learning model internally solves an
optimization problem and is learned with backpropagation

Model

)

- -

-

{ » Optimization Layer # \
)

[z = argmin fy(z2) |
Z

subjectto z € Cy(z, z;)
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Differentiable convex quadratic programs

OptNet: Differentiable Optimization as a Layer in Neural Networks. Amos and Kolter, ICML 2017.

1
x* = argmin ExTQx +p'x
X

subjectto Ax =b Gx<h

KKT Optimality l

Find z* s.t. R(z*,0) = O wherez* = [x*,...]and 8 = {Q,p, A, b, G, h}

4

Implicitly differentiating R gives Dy (z*) = —(DZR(Z*))_lDQiR(Z*)
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Differentiable convex conic programs

Section 7 of Differentiable optimization-based modeling for machine learning. Amos, PhD Thesis 2019
Differentiating through a cone program. Agrawal et al., 2019
Differentiable convex optimization layers. Agrawal*, Amos*, Barratt*, Boyd*, Diamond*, Kolter*, NeurlPS 2019.

T
argmin c'x 01

X Free: R"
subjectto b — Ax € K — Non-negative: R
Second-order (Lorentz): {(t,x) € R, xXR"|||x||, < t}
Semidefinite: S%
Exponential: {(x,y,2z) € R3|ye*” < z,y > 0} U R_x{0}xR,

Cartesian Products: X = X; X ---XJ(,
\

X

Conic Optimality
Find z* s.t. R(z*,0) = Owherez* = [x*,...]and 8 = {4, b, c}

Implicitly differentiating R gives Dy (z*) = —(DZR(Z*))_lDQSQ(Z*)
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Applications of differentiable optimization

Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurlPS 2017.

Task-based learning (task-aware predictions, decision-focused learning)

v
Features Newspaper
(randomly ‘ | stocking
generated) L P —— — — decision
1 2 51020
=x €R" Pred. demand =z€R

(uncertain; discrete)

=plx; 0)

(a) Inventory stock problem
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Applications of differentiable optimization

OptNet: Differentiable Optimization as a Layer in Neural Networks. Amos and Kolter, ICML 2017.

Task-based learning (task-aware predictions, decision-focused learning)
true polytope (unknown to the model)

Learning hard constraints (Sudoku from data)

. polytope predictions during training

example 1

example 2

y*(x) = argmin dist(x,y)
y
subjectto Gy <h

parameters 0 = {G’ h} example 3 example 4
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Applications of differentiable optimization

Limited multi-label projection layer. Amos et al., 2019.

Task-based learning (task-aware predictions, decision-focused learning)
Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

011 111

argtopk,(x) = argmin —y'x — tH,(y) 001
y
subjectto 0 <=y <=1

1Ty =k

1010
0101

a2t
'&-- e
v"'

"""""""" 110

.
oo
oo

Hy() = = ) (ilogy; + (1= y) log(1 = )

is the binary cross-entropy function 000 100
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Applications of differentiable optimization

Learning latent permutations with Gumbel-Sinkhorn networks. Mena et al., ICLR 2018.

Task-based learning (task-aware predictions, decision-focused learning)
Learning hard constraints (Sudoku from data)
Modeling projections (Rel.U, sigmoid, softmax; differentiable top-k, and sorting)

Gumbel-Sinkhorn: projection onto the Birkhoff polytope By:

NN N

Py x = S(9(X,0)/7)
LX)~ X

a1()

ng,,(X) = argmax (P, X)p+7H(P)
P€EBy

BN — {XX > OiZiXij — Z]XU — 1}
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Applications of differentiable optimization

What Game Are We Playing? End-to-end Learning in Normal and Extensive Form Games. Ling et al., IJCAI 2018.

Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

J min maquPv subjectto 1'Tu=1 1"v=1 w,v=0

i w Parameterize and learn payoff P
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Applications of differentiable optimization

Differentiable MPC for end-to-end planning and control. Amos et al., NeurIPS 2018.
The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

Task-based learning (task-aware predictions, decision-focused learning)
Learning hard constraints (Sudoku from data)
Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)

( )
2 cost initial state dynamics constraints

C(xe, ug)| St | X1 = Xipitl Xe+1 = f (e ue) [ue €U

X1, Ul.r € argmin
X1:.7U1:T t

\. J
Parameterize and learn cost and dynamics
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Applications of differentiable optimization

Meta-learning with differentiable convex optimization. Lee et al., CVPR 2019.
Task-based learning (task-aware predictions, decision-focused learning)
Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)
Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)

Meta-learning (differentiable SVMs and optimizers, implicit MAML)

MetaoptNet: .‘ Embeddings of Weights of s (Igt)

Differentiate the decision boundary w.r.t. the dataset fo [:]_.‘ 0 s O ~D~ L;’ff.,

-

* _ . 2 — V: i : i ‘
wH(D) = argmin [lwll* + CZmaX{O'l CAC. A [@ —

Test Exa
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Applications of differentiable optimization

Input-convex neural networks. Amos, Xu, Kolter, ICML 2017.
Task-based learning (task-aware predictions, decision-focused learning)
Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)
Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)
Meta-learning (differentiable SVMs and optimizers, implicit MAML)

Energy-based learning and structured prediction (differentiable inference with, e.g., ICNNs)

y*(x) = argmin Eg(x,y)
y
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Applications of differentiable optimization

Differentiable convex optimization layers. Agrawal*, Amos*, Barratt*, Boyd*, Diamond*, Kolter*, NeurIPS 2019.
Task-based learning (task-aware predictions, decision-focused learning)
Learning hard constraints (Sudoku from data)
Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

8- *

Game theory (differentiable equilibrium finding) .

RL and control (differentiable control-based policies, er *[
2 -

Meta-learning (differentiable SVMs and optimizers, imp .
Energy-based learning and structured prediction (diff ™|

_4 L
Sensitivity analysis (differentiable logistic regression) >
.F

0*(D) € argmaxz log pge (y; | x;) ‘s -6 -4 -2 0 2 4 6 8
6 .
l



Applications of differentiable optimization

Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)
Meta-learning (differentiable SVMs and optimizers, implicit MAML)

Energy-based learning and structured prediction (differentiable inference with, e.g., ICNNs)

Sensitivity analysis (differentiable logistic regression)

Brandon Amos Learning with differentiable and amortized optimization
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Differentiable CVXPY layers

Differentiable convex optimization layers. Agrawal*, Amos*, Barratt*, Boyd*, Diamond*, Kolter*, NeurIPS 2019.

O PyTorch

subjectto g(x;60) <0 M &A%

(Officially part of CVXPY!)

(X py

x*(@) = argmin f(x;0)

1 e 1k i ‘
(Zi+1 = argmin =z7Q(z;)z + q(zi)Tz\ Before: 1k lines of code, now:
Z

2 :
, _ import cvxpy as cp
subjectto A(z;)z = b(z;) from cvxpyth import CvxpyLayer
G(Zi)z = h(Zi) obj = cp.Minimize (0.5%cp.quad_form(x, Q) + p.T * x)
cons [A*x == b, G*x <= h]

. prob = cp.Problem(obj, cons)
\Parameters/SmeOdUIes :Q,9,4,b,G, h) layer = CvxpylLayer (prob, params=[Q, p, A, b, G, h]l, out=[x])
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This talk

Differentiable optimization — %y*(x)

Task-based optimization
Foundations: convex quadratic and cone programs
Applications

Y

Amortized optimization — V,(x) = y*(x)
RL as amortized optimization

Foundations: modeling and loss choices
Applications

Amortization via learning latent subspaces
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This talk: integrating optimization and learning

Key: view optimization as a function from the context x to the solution y*(x) € argmin f(y; x)
yeC(x)

~~
=
8
- ]
@X-
B

Differentiable optimization — —y *(x)
Task-based optimization -

: : Y :
Foundations: convex quadratic and cone programs :
Applications ‘

: X
. e e a. ~ N f(y;x
Amortized optimization — J45(x) = y (x) “(2)
RL as amortized optimization o () .
Foundations: modeling and loss choices Yy
Applications

Amortization via learning latent subspaces

b2
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Deploying optimization and repeated solves

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
On the model-based stochastic value gradient for continuous reinforcement learning. Amos et al., L4DC 2021.

p(x)

Xy X3 Ty Ty Xg X7 Xg T9 X100 T11 T12

L1
e \ 7 (xe) 7(%12)

value

action action action

m(x) = argmax Q(x, u)
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y

Repeatedly solved problems share structure
Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023

N SNASNASNISN

[N
[N

NN

el \Vad\Vad\Vad
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Amortization: approximate the solution map

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

A fast amortization model y4 can be 25,000 times faster than solving y* from scratch for VAEs

J(y;
Amortization model y4(x) tries to approximate y*(x) ” )
Example: A neural network mapping from x to the solution 5 ( ) Y (33)
Yo &

Loss L measures how well ¥ fits y* and optimized with mein L&) Y
Regression: L(jy) = Epx) 5o (x) — y*(x)“%

ObjeCtive: L(ye) = IEp(x)f(j;Q (x)) ‘
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

p(x)

ry X2 I3 T4 I Tg 7 X8 T9 X100 T11 T12
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Given a VAE model p(x) = log fzp(xlz)p(x), encoding amortizes the optimization problem

A*(x) = argmax ELBO(4; x) where ELBO(A; x) := Eq(,2)log p(x]|2)] — Dk, (q(x; DIp(2)).
A
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAES)

Meta-learning (HyperNets, MAML)

Given a task 7', amortize the computation of the optimal parameters of a model

0*(T) = argmax £(T, 9)
0
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)
Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Given a dictionary W, of basis vectors and input x, a sparse code is recovered with

y*(x) € argmin|lx — Wyyll5 + allyll;
y

Predictive sparse decomposition (PSD) and Learned ISTA (LISTA) amortize this problem
Kavukcuoglu, Ranzato, and LeCun, 2010. Gregor and LeCun, 2010.
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)
Meta-learning (HyperNets, MAML)
Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

L . 1
Finding fixed points y = g(y) x* = argmin ExTQx +pTx
X

subjectto b —Ax € K

lKKT conditions

Findz*s.t. R(z*,68) =0

Brandon Amos Learning with differentiable and amortized optimization
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)
Meta-learning (HyperNets, MAML)
Sparse coding (PSD, LISTA)
Roots, fixed points, and convex optimization (NeuralDEQs, RLQP

Optimal transport (slicing, conjugation, Meta Optimal Transport)

T*(a; f) € argmin [Ex~cx”x — T(x)”%

TeC(ap) ///5’99999933933

Meta Optimal Transport. Amos et al., 2022 ) <€ > (V9
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Applications of amortized optimization

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs) i *

Meta-learning (HyperNets, MAML) R & L % 2
: # . & .

Sparse coding (PSD, LISTA) : #. Y .

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, | G m

Optimal transport (slicing, conjugation, Meta Optimal Transport)

fe) = —inff(x) —x'y

On amortizing convex conjugates for optimal transport. Amos, ICLR 2023
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Applications of amortized optimization

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport)

Foundations and Trends® in Machine Learning

Tutorial on amortized optimization for learning to optimize
over continuous domains

Brandon Amos BDAQFB.COM
Facebook AI Research, Meta




Amortization via learning latent subspaces

The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

Amortize the problem by learning a latent subspace of optimal solutions
Only search over optimal solutions rather than the entire space

Full control sequence space

Subspace of
optimal solutions

S |5

( N
cost initial state dynamics constraints
X1.7, Ui,y € argmin E Co(xp, ue) St X1 = Xipjt| |Xee1 = fo O ue) | [ue € U
X1.TU1:T t
\. J
Cartpole videos Optimal controls over time — force on the cartpole
I I
I I \
I I
' !
= [ |
/ r :
I I
I I /
I I
I I
I I
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Amortization via learning latent subspaces

The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

CEM over the full action space

u* — argmln f(u) Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples
ue[0,1]V AMULIIMY & | L DA

Full control sequence space

Controls
1

Timestep Timestep Timestep Timestep

DCEM over the latent action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

Subspace of
optimal solutions

Controls

Timestep Timestep Timestep

Latent space
of optimal solutions

Latent Dim 2

Latent Dim 1 Latent Dim 1 Latent Dim 1 Latent Dim 1




Future directions and open questions

Goal: build intelligent systems that understand and interact with the world
Why? To advance scientific and engineering discoveries

Advancing optimization and machine learning foundations is crucial

amortized optimization

fly; x
g

Yo ()

differentiable optimization

y*(z)
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How to handle discrete spaces?

CombOptNet. Paulus, Rolinek, Musil, Amos, and Martius, ICML 2021.

optimal solution objecti\l/e context (or parameterization)
| |
* : .
y*(x) € argmin f (y; x)

e

optimization variable constraints

knapsack problems
scheduling/assignment problems

continuous discrete m _0_05 H
p TR -
y* (x) — y*(az) keypoint matching -

Y Y
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How to transfer knowledge between structures?

Cross-domain imitation learning via optimal transport. Fickinger, Cohen, Russell, Amos, ICLR 2022.

Optimization (optimal transport) connects disparate spaces to enable knowledge transfer

expert (3 dimensions) —— new system (5 dimensions)

new system
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How can latent representations gain an
awareness of unobserved concepts?

Learning awareness models. Amos et al., ICLR 2018.

(Situation awareness is the perception of the
elements in the environment within a volume
of time and space, and the comprehension of
their meaning, and the projection of their
\status in the near future. )

RawlLSTM PreCoNN

* T

— Mica Endsley (1987)
Former Chief Scientist of the U.S. Air Force
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How to model and control non-trivial systems?

-
l-
-
-
-
-
-l
{

Nocturne: a driving benchmark for multi-agent learning.
Vinitsky et al., NeurlPS Datasets and Benchmarks 2022

/_’_/\-
On the model-based stochastic value gradient for continuous reinforcement.
B. Amos et al., L4DC 2021.

—-—

Learning Neural Event Functions for Ordinary Differential Equations.
Chen, Amos, Nickel, ICLR 2021.
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How to perform machine learning and
optimization over non-Euclidean spaces?

Riemannian convex potential maps. Cohen*, Amos*, and Lipman, ICML 2021.

Base distribution c-convex function Grid warped by the transport Push-forward distribution

Earth 90 million years ago Earth today Optimal transport displacement
R %\l‘;’ a?'/f,’,‘ AN oty
NN =

N fme
-,--\\\\\\\\\\\\\l///

7 '-\'j\\__’—*\\;;:\‘f e
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How to perform machine learning and
optimization over non-Euclidean spaces?

Matching Normalizing Flows and Probability Paths on Manifolds. Ben-Hamu et al., ICML 2022.

Flood Volcano
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Summary

Optimization expresses non-trivial reasoning operations

Integrates nicely with machine learning by seeing it as a function

differentiable optimization amortized optimization

iy ' (@) pt (@)

3)9 (J)
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