
Learning with differentiable and
amortized optimization

Brandon Amos • Meta AI (FAIR) NYC http://github.com/bamos/presentations

Brandon Amos
� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos

� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8

http://github.com/bamos/presentations

Optimization is crucial technology
Optimization is a modeling and decision-making paradigm and encodes reasoning operations

Finds the best way to interact with a representation of the world

Focus: parametric optimization problems that are repeatedly solved

Brandon Amos Learning with differentiable and amortized optimization 2

𝑦⋆ 𝑥 ∈ argmin
"∈𝒞(&)

𝑓(𝑦; 𝑥)
context (or parameterization)objective

optimization variable constraints

optimal solution

x

y

f(y; x)

y?(x)

vertical slices are optimization problems

Breakthroughs enabled by optimization include

1. controlling systems (robotic, autonomous, mechanical, and multi-agent)

Brandon Amos Learning with differentiable and amortized optimization 3

𝑦⋆ 𝑥 ∈ argmin
"∈𝒞(&)

𝑓(𝑦; 𝑥)
optimal solution

optimization variable

objective context (or parameterization)

constraints

x

y

f(y; x)

y?(x)

Breakthroughs enabled by optimization include

1. controlling systems (robotic, autonomous, mechanical, and multi-agent)
2. making operational decisions based on future predictions
3. efficiently transporting or matching resources, information, and measures
4. allocating budgets and portfolios
5. designing materials, molecules, and other structures
6. solving inverse problems (to infer underlying hidden costs, incentives, geometries, terrains)
7. parameter learning of predictive and statistical models

Brandon Amos Learning with differentiable and amortized optimization 4

𝑦⋆ 𝑥 ∈ argmin
"∈𝒞(&)

𝑓(𝑦; 𝑥)
optimal solution

optimization variable

objective context (or parameterization)

constraints

x

y

f(y; x)

y?(x)

When optimization fails, machine learning helps

Bad representation of the world (unknown, mis-specified, or inaccurate)
Solving is computationally difficult

Brandon Amos Learning with differentiable and amortized optimization 5

When machine learning fails, optimization helps

𝑦⋆ 𝑥 ∈ argmin
"∈𝒞(&)

𝑓(𝑦; 𝑥)

Optimization provides an internal reasoning operation

A lot of data Model Predictions Loss

Domain knowledge: matrix operations, convolutions, activation
functions, transformers, attention mechanisms
This talk: optimization-based domain knowledge

This talk: integrating optimization and learning
Key: view optimization as a function from the context 𝑥 to the solution 𝑦⋆(𝑥) ∈ argmin

"∈𝒞(&)
𝑓(𝑦; 𝑥)

Differentiable optimization — (
(&
𝑦⋆(𝑥)

Task-based optimization
Foundations: convex quadratic and cone programs
Applications

Amortized optimization — 2𝑦)(𝑥) ≈ 𝑦⋆(𝑥)
RL as amortized optimization
Foundations: modeling and loss choices
Applications
Amortization via learning latent subspaces

Brandon Amos Learning with differentiable and amortized optimization 6

x

y

f(y; x)

y?(x)
ŷµ(x)

x

y

f(y; x)

y?(x)

Demand prediction and scheduling

Brandon Amos Learning with differentiable and amortized optimization 7

𝑧⋆(𝑥, 𝑦) ∈ argmin
*∈𝒞(&,")

𝑓(𝑧; 𝑥, 𝑦)

Predicted electricity demands Electricity generation schedule

Using predictions for scheduling

Brandon Amos Learning with differentiable and amortized optimization 8

Stage 2: deploy within a larger system

Model Prediction Downstream task
(an optimization problem)Query point

𝑧⋆(𝑥, 𝑦) ∈ argmin
*∈𝒞(&,")

𝑓(𝑧; 𝑥, 𝑦)

A lot of data Model Predictions Loss
(log-likelihood)

Stage 1: maximum likelihood training

Using predictions for scheduling

Brandon Amos Learning with differentiable and amortized optimization 9

Stage 2: deploy within a larger system

Model Prediction Downstream task
(an optimization problem)Query point

𝑧⋆(𝑥, 𝑦) ∈ argmin
*∈𝒞(&,")

𝑓(𝑧; 𝑥, 𝑦)

A lot of data Model Predictions Loss
(log-likelihood)

Stage 1: maximum likelihood training

max-likelihood model ≠ best model for the task
Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurIPS 2017.
Objective mismatch in model-based reinforcement learning. Lambert, Amos, Yadan, and Calandra, L4DC 2020.

Why? Modeling errors impact tasks in different ways

Idea: improve the model with the task loss

Brandon Amos Learning with differentiable and amortized optimization 10

A lot of data Model Predictions Loss
(log-likelihood)

Stage 1: maximum likelihood training

Stage 2: deploy within a larger system. Improve the model with the task information

Model Prediction Downstream task
(an optimization problem)Query point

∇!ℓNLL: standard backpropagation

∇!ℓtask: differentiates through an optimization problem

𝑧⋆(𝑥, 𝑦) ∈ argmin
*∈𝒞(&,")

𝑓(𝑧; 𝑥, 𝑦)

Incorporating the task loss is crucial

Brandon Amos Learning with differentiable and amortized optimization 11

Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurIPS 2017.

𝑧⋆(𝑥, 𝑦) ∈ argmin
*∈𝒞(&,")

𝑓(𝑧; 𝑥, 𝑦)

Task-based End-to-end Model Learning in Stochastic Optimization
Priya L. Donti,*,1,2 Brandon Amos1, and J. Zico Kolter1

1 School of Computer Science 2 Dept. of Engineering & Public Policy (Carnegie Mellon University)
* pdonti@cmu.edu https://github.com/locuslab/e2e-model-learning

We propose a task-based approach for
learning probabilistic ML models in the

loop of stochastic optimization.

Predictive algorithms often operate within some larger
process, but are trained on criteria unrelated to this process.

Standard image classification treats all mistakes as equal (via 0/1 loss), but
the wrong kind of mistake could lead to undesirable driving behavior.

We train a model not (solely) for predictive accuracy, but to
minimize the task-based objective we ultimately care about.

Introduction

?
?

?
?

Standard approaches to ML in stochastic optimization are:
1) Traditional model learning: Model conditional distribution

!|# by learning distribution parameters $.

%minimize%
+

,−log 1 ! 2 # 2 ; $.%%%%%%%%%%%%%%%%

5

267

Drawback: Model bias in (common) non-realizable case.
2) Model-free policy optimization: Map directly from inputs #

to actions 8. Forgo learning model of !.
Drawback: Data-inefficient.

We offer an intermediate approach where we both learn a
model of 9 AND adjust model parameters with respect to :.

Standard ML Approaches

Stochastic optimization makes decisions under uncertainty by
optimizing objectives governed by a random process [2].

Given: Input-output pairs (#, !) ∼ ? for real, unknown ?
Output: “Optimal” actions 8, by optimizing task cost @ via:
minimize

A
%%BC,D∼?[@ #, !, 8]

subject%to%%%BC,D∼? M2 #, !, 8 ≤ 0,… Q = 1,… , T2UVW
%%%%%%%%%%%%%%%%%%%%%%ℎ2 8 = 0,…%%%%%%%%%%% . %%%%%%%%%%%%Q = 1,… , TVW

E.g.: # = pixels, ! = segmentation map, 8 = vehicle path,
@%= driving quality, M, ℎ%= constraints in physical environment

Knowing ? would enable us to choose truly optimal 8⋆, but in
reality we don’t know ?… so we turn to machine learning.

Setting: Stochastic Optimization

The gradient of the objective depends on the argmin result 8⋆ #; $:

Z[

Z$
=
Z[

Z8⋆
Z8⋆

Z$
=
Z[

Z8⋆

Z%argmin
A

%BD∼^(D|C;+) @ #, !, 8⋆ #; $

Z$
.

To obtain the gradient, we write the KKT optimality conditions of (*).
Assuming convexity allows us to replace the general equality
constraints ℎ 8 = 0with the linear constraints _8 = `.

A point (8, a, b) is a primal-dual optimal point if it satisfies
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BM 8 ≤ 0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%_8 = `

a ≥ 0
a ∘ BM 8 = 0%%%%%

%%%%%eAB%@ 8 + ageAB%M 8 + _gb = 0%%

where expectations are over ! ∼ 1(!|#; $), M is the vector of all
inequality constraints, and the dependence on # and ! is via @ and M.

Differentiating these equations and applying the implicit function
yields linear equations we can solve to get the necessary Jacobians.

In practice, we use SQP to solve (*), finding 8⋆ #; $ via a solution for
fast argmin differentiation in QPs [3] and then taking derivatives
through the quadratic approximation at this optimum.

Technical Challenge: Argmin Differentiation

We outperform both traditional model learning and model-free policy optimization in terms of task
cost, the objective of actual interest in the closed-loop system.

(a) Inventory stock problem (b) Load forecasting/generator scheduling (c) Price forecasting/battery arbitrage

Inventory stock problem: Order quantity 8 of a product to minimize costs over stochastic demand !.
minimize

A%∈%ℝ
%BD[@jklmn !, 8] = BD op8 +

1

2
rp8

s + ot ! − 8 u +
1

2
rt ! − 8 u

s + ov 8 − ! u +
1

2
rv 8 − ! u

s

Generator scheduling: Schedule electricity generation 8 to minimize costs over stochastic demand !.
%

minimize
A%∈%ℝwx

%BD ,yj !2 − 82 u + yV 82 − !2 u +
1

2
82 − !2

s

sz

267

%%%%%%subject%to%% 82 − 82u7 ≤ o{|}~.

Battery arbitrage: Schedule battery charge/discharge 8 to minimize costs over energy prices !.

%minimize
A�Ä,%AÅÇÉ,%AÑÉÖÉÜ∈ℝwx

%%BD ,!2 8áà − 8âäã 2 +

sz

267

a 8åã|ãç %−
é

2

s

+ è 8áà
s + è 8âäã

s%

Experiments

Pred. demand
(uncertain; discrete)
≡ "($|&; ()

≡ & ∈ ℝ,

Features
(randomly
generated)

Newspaper
stocking
decision

≡ - ∈ ℝ
1 2 5 10 20

(

Past demand,
past temperature,
temporal features Pred. demand

(w/ uncertainty)

Generation
schedule (e.g.)

≡ "($|&; ()

≡ -

≡ &

Pr
es

en
t

(

(≡ &

Pred. prices
(w/ uncertainty)
≡ "($|&; ()

Battery
schedule (e.g.)

≡ -

Past prices,
past temperature,
temporal features

Pr
es

en
t

Our task-based model outperforms:
• Traditional model-based MLE in all but

the realizable case, correcting for effects
of model misspecification.

• Model-free policy optimizer, due to
increased data efficiency.

While an RMSE-minimizing model
produces “objectively” better
predictions, our task-based model
yields a 38.6% improvement in task
performance over the RMSE model.

subject%to%%
%%%%%%%%%%%%%%%8åã|ãç,%2u7 = 8åã|ãç,%2 − 8âäã,2 + yçêê%8áà,2
%%%%%%%%%%%%%%%8åã|ãç,%7 = é/2 ,%%%0 ≤ 8åã|ãç ≤ é
%%%%%%%%%%%%%%%0 ≤ 8áà ≤ oáà%, 0 ≤ 8âäã ≤ oâäã %

Here, !%is inherently very
stochastic, and our task-
based net demonstrates
more reliable performance
than an RMSE-minimizing net.

We propose an end-to-end approach for learning machine learning models used within stochastic
optimization. Our experiments indicate that our task-based model learning method outperforms both
traditional MLE and “black-box” policy-optimizing methods with respect to task cost.

Future work includes an extension of this method to stochastic learning models with multiple rounds,
and further to model predictive control and full reinforcement learning settings.

Conclusions

Our model-based approach incorporates knowledge of the final task.

We provide a general framework for adjusting model parameters
in stochastic optimization to optimize closed-loop performance

of the resulting system.

Our method chooses parameters $ for !|# to minimize task loss:
%minimize%

+
[$ = BC,D∼?[@ #, !, 8⋆(#; $)]

where 8⋆(#; $) are the optimal actions w.r.t. our predictions, i.e.
8⋆ #; $ = argmin

A
%BD∼^(D|C;+) @ #, !, 8⋆ #; $ %%%%%%(∗)

(with constraints omitted above for simplicity of illustration).

Algorithm
input: ?% // ability to sample from true, unknown distribution
initialize: $ // initial distribution parameters

for ì = 1,…î%do
sample #, ! ∼ ?
compute 8⋆ #; $ via Equation (*) (with constraints)

// step in violated constraint or objective
if ∃Q s.t. M2 #, !, 8⋆ #; $ > 0 then

update $ with e+M2 #, !, 8⋆ #; $
else

update $ with e+@(#, !, 8⋆ #; $)
end if

end for

Our Method

[1] Bengio, Y. (1997). Using a financial training criterion rather than a prediction criterion. International Journal of Neural Systems, 8(04), 433-443.
[2] Shapiro, A., & Philpott, A. (2007). A tutorial on stochastic programming. Manuscript. Available at www2.isye.gatech.edu/ashapiro/publications.html.
[3] Amos, B. & Kolter, J.Z. (2017). OptNet: Differentiable Optimization as a Layer in Neural Networks. Proceedings of the 34th International Conference on Machine Learning, in PMLR 70:136-145
This work was supported by the NSF GRFP under Grant No. DGE1252522, as well as the Department of Energy Computational Science Graduate Fellowship.

Hyperparameters Task,cost
%,improvement

ó ò RMSE net Task7based,net
(our,method)

0.1 0.05 &1.45 + 4.67 &2.92-+ 0.30& 102
1 0.5 4.96-+ 4.85 2.28-+ 2.99 54
10 5 131.08-+ 144.86 95.88-+ 29.83 27
35 15 172.66-+ 7.3800 169.84-+ 2.1600 2

Bengio [1] uses task-based learning in a deterministic setting by
tuning a financial price prediction model based on returns from
a hedging strategy that employs it. We extend this work to a
stochastic optimization setting, and propose a general
procedure for task-based learning in this domain.

Related Work

(our method)

negative log-likelihood

hour of day

Task-based End-to-end Model Learning in Stochastic Optimization
Priya L. Donti,*,1,2 Brandon Amos1, and J. Zico Kolter1

1 School of Computer Science 2 Dept. of Engineering & Public Policy (Carnegie Mellon University)
* pdonti@cmu.edu https://github.com/locuslab/e2e-model-learning

We propose a task-based approach for
learning probabilistic ML models in the

loop of stochastic optimization.

Predictive algorithms often operate within some larger
process, but are trained on criteria unrelated to this process.

Standard image classification treats all mistakes as equal (via 0/1 loss), but
the wrong kind of mistake could lead to undesirable driving behavior.

We train a model not (solely) for predictive accuracy, but to
minimize the task-based objective we ultimately care about.

Introduction

?
?

?
?

Standard approaches to ML in stochastic optimization are:
1) Traditional model learning: Model conditional distribution

!|# by learning distribution parameters $.

%minimize%
+

,−log 1 ! 2 # 2 ; $.%%%%%%%%%%%%%%%%

5

267

Drawback: Model bias in (common) non-realizable case.
2) Model-free policy optimization: Map directly from inputs #

to actions 8. Forgo learning model of !.
Drawback: Data-inefficient.

We offer an intermediate approach where we both learn a
model of 9 AND adjust model parameters with respect to :.

Standard ML Approaches

Stochastic optimization makes decisions under uncertainty by
optimizing objectives governed by a random process [2].

Given: Input-output pairs (#, !) ∼ ? for real, unknown ?
Output: “Optimal” actions 8, by optimizing task cost @ via:
minimize

A
%%BC,D∼?[@ #, !, 8]

subject%to%%%BC,D∼? M2 #, !, 8 ≤ 0,… Q = 1,… , T2UVW
%%%%%%%%%%%%%%%%%%%%%%ℎ2 8 = 0,…%%%%%%%%%%% . %%%%%%%%%%%%Q = 1,… , TVW

E.g.: # = pixels, ! = segmentation map, 8 = vehicle path,
@%= driving quality, M, ℎ%= constraints in physical environment

Knowing ? would enable us to choose truly optimal 8⋆, but in
reality we don’t know ?… so we turn to machine learning.

Setting: Stochastic Optimization

The gradient of the objective depends on the argmin result 8⋆ #; $:

Z[

Z$
=
Z[

Z8⋆
Z8⋆

Z$
=
Z[

Z8⋆

Z%argmin
A

%BD∼^(D|C;+) @ #, !, 8⋆ #; $

Z$
.

To obtain the gradient, we write the KKT optimality conditions of (*).
Assuming convexity allows us to replace the general equality
constraints ℎ 8 = 0with the linear constraints _8 = `.

A point (8, a, b) is a primal-dual optimal point if it satisfies
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%BM 8 ≤ 0
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%_8 = `

a ≥ 0
a ∘ BM 8 = 0%%%%%

%%%%%eAB%@ 8 + ageAB%M 8 + _gb = 0%%

where expectations are over ! ∼ 1(!|#; $), M is the vector of all
inequality constraints, and the dependence on # and ! is via @ and M.

Differentiating these equations and applying the implicit function
yields linear equations we can solve to get the necessary Jacobians.

In practice, we use SQP to solve (*), finding 8⋆ #; $ via a solution for
fast argmin differentiation in QPs [3] and then taking derivatives
through the quadratic approximation at this optimum.

Technical Challenge: Argmin Differentiation

We outperform both traditional model learning and model-free policy optimization in terms of task
cost, the objective of actual interest in the closed-loop system.

(a) Inventory stock problem (b) Load forecasting/generator scheduling (c) Price forecasting/battery arbitrage

Inventory stock problem: Order quantity 8 of a product to minimize costs over stochastic demand !.
minimize

A%∈%ℝ
%BD[@jklmn !, 8] = BD op8 +

1

2
rp8

s + ot ! − 8 u +
1

2
rt ! − 8 u

s + ov 8 − ! u +
1

2
rv 8 − ! u

s

Generator scheduling: Schedule electricity generation 8 to minimize costs over stochastic demand !.
%

minimize
A%∈%ℝwx

%BD ,yj !2 − 82 u + yV 82 − !2 u +
1

2
82 − !2

s

sz

267

%%%%%%subject%to%% 82 − 82u7 ≤ o{|}~.

Battery arbitrage: Schedule battery charge/discharge 8 to minimize costs over energy prices !.

%minimize
A�Ä,%AÅÇÉ,%AÑÉÖÉÜ∈ℝwx

%%BD ,!2 8áà − 8âäã 2 +

sz

267

a 8åã|ãç %−
é

2

s

+ è 8áà
s + è 8âäã

s%

Experiments

Pred. demand
(uncertain; discrete)
≡ "($|&; ()

≡ & ∈ ℝ,

Features
(randomly
generated)

Newspaper
stocking
decision

≡ - ∈ ℝ
1 2 5 10 20

(

Past demand,
past temperature,
temporal features Pred. demand

(w/ uncertainty)

Generation
schedule (e.g.)

≡ "($|&; ()

≡ -

≡ &

Pr
es

en
t

(

(≡ &

Pred. prices
(w/ uncertainty)
≡ "($|&; ()

Battery
schedule (e.g.)

≡ -

Past prices,
past temperature,
temporal features

Pr
es

en
t

Our task-based model outperforms:
• Traditional model-based MLE in all but

the realizable case, correcting for effects
of model misspecification.

• Model-free policy optimizer, due to
increased data efficiency.

While an RMSE-minimizing model
produces “objectively” better
predictions, our task-based model
yields a 38.6% improvement in task
performance over the RMSE model.

subject%to%%
%%%%%%%%%%%%%%%8åã|ãç,%2u7 = 8åã|ãç,%2 − 8âäã,2 + yçêê%8áà,2
%%%%%%%%%%%%%%%8åã|ãç,%7 = é/2 ,%%%0 ≤ 8åã|ãç ≤ é
%%%%%%%%%%%%%%%0 ≤ 8áà ≤ oáà%, 0 ≤ 8âäã ≤ oâäã %

Here, !%is inherently very
stochastic, and our task-
based net demonstrates
more reliable performance
than an RMSE-minimizing net.

We propose an end-to-end approach for learning machine learning models used within stochastic
optimization. Our experiments indicate that our task-based model learning method outperforms both
traditional MLE and “black-box” policy-optimizing methods with respect to task cost.

Future work includes an extension of this method to stochastic learning models with multiple rounds,
and further to model predictive control and full reinforcement learning settings.

Conclusions

Our model-based approach incorporates knowledge of the final task.

We provide a general framework for adjusting model parameters
in stochastic optimization to optimize closed-loop performance

of the resulting system.

Our method chooses parameters $ for !|# to minimize task loss:
%minimize%

+
[$ = BC,D∼?[@ #, !, 8⋆(#; $)]

where 8⋆(#; $) are the optimal actions w.r.t. our predictions, i.e.
8⋆ #; $ = argmin

A
%BD∼^(D|C;+) @ #, !, 8⋆ #; $ %%%%%%(∗)

(with constraints omitted above for simplicity of illustration).

Algorithm
input: ?% // ability to sample from true, unknown distribution
initialize: $ // initial distribution parameters

for ì = 1,…î%do
sample #, ! ∼ ?
compute 8⋆ #; $ via Equation (*) (with constraints)

// step in violated constraint or objective
if ∃Q s.t. M2 #, !, 8⋆ #; $ > 0 then

update $ with e+M2 #, !, 8⋆ #; $
else

update $ with e+@(#, !, 8⋆ #; $)
end if

end for

Our Method

[1] Bengio, Y. (1997). Using a financial training criterion rather than a prediction criterion. International Journal of Neural Systems, 8(04), 433-443.
[2] Shapiro, A., & Philpott, A. (2007). A tutorial on stochastic programming. Manuscript. Available at www2.isye.gatech.edu/ashapiro/publications.html.
[3] Amos, B. & Kolter, J.Z. (2017). OptNet: Differentiable Optimization as a Layer in Neural Networks. Proceedings of the 34th International Conference on Machine Learning, in PMLR 70:136-145
This work was supported by the NSF GRFP under Grant No. DGE1252522, as well as the Department of Energy Computational Science Graduate Fellowship.

Hyperparameters Task,cost
%,improvement

ó ò RMSE net Task7based,net
(our,method)

0.1 0.05 &1.45 + 4.67 &2.92-+ 0.30& 102
1 0.5 4.96-+ 4.85 2.28-+ 2.99 54
10 5 131.08-+ 144.86 95.88-+ 29.83 27
35 15 172.66-+ 7.3800 169.84-+ 2.1600 2

Bengio [1] uses task-based learning in a deterministic setting by
tuning a financial price prediction model based on returns from
a hedging strategy that employs it. We extend this work to a
stochastic optimization setting, and propose a general
procedure for task-based learning in this domain.

Related Work

(our method)

task-based generation loss

hour of day

+ task loss

train with maximum likelihood

How to differentiate an optimization problem?

Brandon Amos Learning with differentiable and amortized optimization 12

∇!ℓtask: differentiates through an optimization problem ???

Differentiable optimization layers
Definition. A differentiable optimization layer for a machine learning model internally solves an
optimization problem and is learned with backpropagation

Brandon Amos Learning with differentiable and amortized optimization 13

Optimization Layer

A lot of data Model Predictions Loss

𝑧,-. = argmin
*

𝑓) 𝑧, 𝑧,
subject to 𝑧 ∈ 𝐶) 𝑧, 𝑧,

… …

Differentiable convex quadratic programs

Brandon Amos Learning with differentiable and amortized optimization 14

𝑥⋆ = argmin
"

1
2 𝑥

#𝑄𝑥 + 𝑝#𝑥

subject to 𝐴𝑥 = 𝑏 𝐺𝑥 ≤ ℎ

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0where 𝑧⋆ = [𝑥⋆, …] and 𝜃 = 𝑄, 𝑝, 𝐴, 𝑏, 𝐺, ℎ

Implicitly differentiating ℛ gives 𝐷@ 𝑧⋆ = − 𝐷Aℛ 𝑧⋆
BC
𝐷@ℛ 𝑧⋆

KKT Optimality

OptNet: Differentiable Optimization as a Layer in Neural Networks. Amos and Kolter, ICML 2017.

Differentiable convex conic programs

Brandon Amos Learning with differentiable and amortized optimization 15

𝑥⋆ = argmin
"

𝑐#𝑥

subject to 𝑏 − 𝐴𝑥 ∈ 𝒦

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0where 𝑧⋆ = [𝑥⋆, …] and 𝜃 = {𝐴, 𝑏, 𝑐}
Conic Optimality

• The standard Euclidean projection onto the non-negative orthant R
n
+ is defined by

⇡(x) 2 argmin
y

1

2
kx� yk22 s. t. y � 0, (20)

and has a closed-form solution given the ReLU, i.e. ⇡(x) := max{0, x}.

• The interior of the unit hypercube [0, 1]
n can be projected onto with the entropy-

regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �Hb(y), (21)

where

Hb(y) =:=

X

i

yi log yi + (1� yi) log(1� yi)

!
(22)

is the binary entropy function. Eq. (21) has a closed-form solution given by the sigmoid
or logistic function, i.e. ⇡(x) := (1 + e

�x
)
�1.

• The interior of the (n� 1)-simplex defined by

�n�1 := {p 2 R
n | 1>p = 1 and p � 0} (23)

can be projected onto with the entropy-regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �H(y) s. t. 1

>
y = 1 (24)

where H(y) := �
P

i
yi log yi is the entropy function. Eq. (24) has a closed-form

solution given by the softargmax, i.e. ⇡(x)j = e
xj/
P

i
e
xi , which is historically referred

to as the softmax.

Going beyond these, we next cover differentiable projections onto convex cones, noting that
they can also be softened or regularized to help with continuity when composed with learning
and amortization methods. Ali et al. (2017); Busseti et al. (2019) discuss differentiating the
standard Euclidean projections onto these, including:

• The second-order, Lorentz, or ice cream cone defined by
Ksoc := {(x, y) 2 R

m�1 ⇥ R : kxk2 y}. The standard
Euclidean projection is given in closed form as

⇡(x, y) :=

8
><

>:

0 kxk2 �y

(x, y) kxk2 y

1
2(1 +

y

kxk2)(x, kxk2) otherwise.
(25)

and can be explicitly differentiated.

• The positive semidefinite cone Sm
+ of the space of m⇥m positive semidefinite matrices.

The Euclidean projection is obtained in closed-form by projecting the eigenvalues to
be non-negative with ⇡(X) :=

P
i
max{�i, 0}qiq>i , where the eigenvalue decomposition

of X is given by X =
P

i
�iqiq

>
i

. The derivative can be computed by differentiating
through the eigenvalue decomposition and projection of the eigenvalues.

18

Section 7 of Differentiable optimization-based modeling for machine learning. Amos, PhD Thesis 2019
Differentiating through a cone program. Agrawal et al., 2019

Differentiable convex optimization layers. Agrawal*, Amos*, Barratt*, Boyd*, Diamond*, Kolter*, NeurIPS 2019.

Zero: 0
Free: ℝ!
Non-negative: ℝ"!
Second-order (Lorentz): 𝑡, 𝑥 ∈ ℝ"×ℝ! 𝑥 # ≤ 𝑡}
Semidefinite: 𝕊"!
Exponential: 𝑥, 𝑦, 𝑧 ∈ ℝ$ 𝑦𝑒%/' ≤ 𝑧, 𝑦 > 0} ∪ ℝ(× 0 ×ℝ"
Cartesian Products: 𝒦 = 𝒦)×⋯×𝒦*

Implicitly differentiating ℛ gives 𝐷@ 𝑧⋆ = − 𝐷Aℛ 𝑧⋆
BC
𝐷@ℛ 𝑧⋆

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Brandon Amos Learning with differentiable and amortized optimization 16

Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurIPS 2017.

Pred. demand
(uncertain; discrete)
≡ "($|&; ()

≡ & ∈ ℝ,

Features
(randomly
generated)

Newspaper
stocking
decision

≡ - ∈ ℝ
1 2 5 10 20

(

(a) Inventory stock problem

Past demand,
past temperature,
temporal features Pred. demand

(w/ uncertainty)

Generation
schedule (e.g.)

≡ "($|&; ()

≡ -

≡ &

Pr
es

en
t

(

(b) Load forecasting problem

(≡ &

Pred. prices
(w/ uncertainty)
≡ "($|&; ()

Battery
schedule (e.g.)

≡ -

Pr
es

en
t

Past prices,
past temperature,
temporal features,
load forecasts

(c) Price forecasting problem

Figure 1: Features x, model predictions y, and policy z for the three experiments.

solve the proxy stochastic programming problem (3) to obtain z?(x, ✓), using the distribution defined
by our current values of ✓. Then, we compute the true loss L(✓) using the observed value of y.
If any of the inequality constraints gi in L(✓) are violated, we take a gradient step in the violated
constraint; otherwise, we take a gradient step in the optimization objective f . We note that if any
inequality constraints are probabilistic, Algorithm 1 must be adapted to employ mini-batches in order
to determine whether these probabilistic constraints are satisfied. Alternatively, because even the gi
constraints are probabilistic, it is common in practice to simply move a weighted version of these
constraints to the objective, i.e., we modify the objective by adding some appropriate penalty times
the positive part of the function, �gi(x, y, z)+, for some � > 0. In practice, this has the effect of
taking gradient steps jointly in all the violated constraints and the objective in the case that one or
more inequality constraints are violated, often resulting in faster convergence. Note that we need
only move stochastic constraints into the objective; deterministic constraints on the policy itself will
always be satisfied by the optimizer, as they are independent of the model.

3.3 Differentiating the optimization solution to a stochastic programming problem

While the above presentation highlights the simplicity of the proposed approach, it avoids the issue
of chief technical challenge to this approach, which is computing the gradient of an objective that
depends upon the argmin operation z?(x; ✓). Specifically, we need to compute the term

@L

@✓
=

@L

@z?
@z?

@✓
(6)

which involves the Jacobian @z?

@✓ . This is the Jacobian of the optimal solution with respect to the
distribution parameters ✓. Recent approaches have looked into similar argmin differentiations [28, 29],
though the methodology we present here is more general and handles the stochasticity of the objective.

At a high level, we begin by writing the KKT optimality conditions of the general stochastic
programming problem (3). Differentiating these equations and applying the implicit function theorem
gives a set of linear equations that we can solve to obtain the necessary Jacobians (with expectations
over the distribution y ⇠ p(y|x; ✓) denoted Ey✓ , and where g is the vector of inequality constraints)
2

64
r2

zEy✓f(z) +

nineqX

i=1

�ir2
zEy✓gi(z) (rzEy✓g(z))

T AT

diag(�) (rzEy✓g(z)) diag(Ey✓g(z)) 0
A 0 0

3

75

2

64

@z
@✓
@�
@✓
@⌫
@✓

3

75 = �

2

64

@rzEy✓
f(z)

@✓ +
@
Pnineq

i=1 �irzEy✓
gi(z)

@✓

diag(�)
@Ey✓

g(z)

@✓

0

3

75 .

(7)
The terms in these equations look somewhat complex, but fundamentally, the left side gives the
optimality conditions of the convex problem, and the right side gives the derivatives of the relevant
functions at the achieved solution with respect to the governing parameter ✓. In practice, we calculate
the right-hand terms by employing sequential quadratic programming [30] to find the optimal policy
z?(x; ✓) for the given parameters ✓, using a recently-proposed approach for fast solution of the argmin
differentiation for QPs [31] to solve the necessary linear equations; we then take the derivatives at the
optimum produced by this strategy. Details of this approach are described in the appendix.

4 Experiments

We consider three applications of our task-based method: a synthetic inventory stock problem, a
real-world energy scheduling task, and a real-world battery arbitrage task. We demonstrate that the
task-based end-to-end approach can substantially improve upon other alternatives. Source code for
all experiments is available at https://github.com/locuslab/e2e-model-learning.

5

Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Applications of differentiable optimization

Brandon Amos 17

polytope predictions during training
true polytope (unknown to the model)

example 1 example 2

example 3 example 4

𝑦⋆(𝑥) = argmin
"

dist(𝑥, 𝑦)

subject to 𝐺𝑦 ≤ ℎ

parameters 𝜃 = {𝐺, ℎ}

OptNet: Differentiable Optimization as a Layer in Neural Networks. Amos and Kolter, ICML 2017.

Learning with differentiable and amortized optimization

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Brandon Amos Learning with differentiable and amortized optimization 18

argtopk/(𝑥) = argmin
"

−𝑦0𝑥 − 𝜏𝐻1(𝑦)

subject to 0 ≤ 𝑦 ≤ 1
10𝑦 = 𝑘

𝐻+ 𝑦 ≔ −6
,

𝑦, log 𝑦, + 1 − 𝑦, log 1 − 𝑦,

is the binary cross-entropy function

Limited multi-label projection layer. Amos et al., 2019.

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Brandon Amos Learning with differentiable and amortized optimization 19

Learning latent permutations with Gumbel-Sinkhorn networks. Mena et al., ICLR 2018.

ℬ2 = 𝑋:𝑋 ≥ 0, Σ,𝑋,3 = Σ3𝑋,3 = 1

𝜋ℬ!,/(𝑋) = argmax
5∈ℬ!

𝑃, 𝑋 6+𝜏𝐻 𝑃

Gumbel-Sinkhorn: projection onto the Birkhoff polytope ℬ2:

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

Brandon Amos Learning with differentiable and amortized optimization 20

What Game Are We Playing? End-to-end Learning in Normal and Extensive Form Games. Ling et al., IJCAI 2018.

min
7
max
8
𝑢0𝑃𝑣 subject to 10𝑢 = 1 10𝑣 = 1 𝑢, 𝑣 ≥ 0

Parameterize and learn payoff 𝑃

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)

Brandon Amos Learning with differentiable and amortized optimization 21

Differentiable MPC for end-to-end planning and control. Amos et al., NeurIPS 2018.
The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

𝑥.::⋆ , 𝑢.::⋆ ∈ argmin
&":$,7":$

]
;

𝐶 𝑥;, 𝑢; s.t. 𝑥. = 𝑥init 𝑥;-. = 𝑓 𝑥;, 𝑢; 𝑢; ∈ 𝒰
cost dynamics constraintsinitial state

Parameterize and learn cost and dynamics

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)

Meta-learning (differentiable SVMs and optimizers, implicit MAML)

Brandon Amos Learning with differentiable and amortized optimization 22

Meta-learning with differentiable convex optimization. Lee et al., CVPR 2019.

𝑤⋆ 𝒟 = argmin
=

𝑤 > + 𝐶/
?

max{0, 1 − 𝑦?𝑓 𝑥? }

MetaOptNet:
Differentiate the decision boundary w.r.t. the dataset

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)

Meta-learning (differentiable SVMs and optimizers, implicit MAML)

Energy-based learning and structured prediction (differentiable inference with, e.g., ICNNs)

Brandon Amos Learning with differentiable and amortized optimization 23

Input-convex neural networks. Amos, Xu, Kolter, ICML 2017.

𝑦⋆ 𝑥 = argmin
"

𝐸)(𝑥, 𝑦)

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)

Meta-learning (differentiable SVMs and optimizers, implicit MAML)

Energy-based learning and structured prediction (differentiable inference with, e.g., ICNNs)

Sensitivity analysis (differentiable logistic regression)

24

Differentiable convex optimization layers. Agrawal*, Amos*, Barratt*, Boyd*, Diamond*, Kolter*, NeurIPS 2019.

𝜃⋆(𝒟) ∈ argmax
!

2
#

log 𝑝! 𝑦# 𝑥#)

∇𝒟𝜃⋆ 𝒟

Applications of differentiable optimization
Task-based learning (task-aware predictions, decision-focused learning)

Learning hard constraints (Sudoku from data)

Modeling projections (ReLU, sigmoid, softmax; differentiable top-k, and sorting)

Game theory (differentiable equilibrium finding)

RL and control (differentiable control-based policies, enforcing safety constraints)

Meta-learning (differentiable SVMs and optimizers, implicit MAML)

Energy-based learning and structured prediction (differentiable inference with, e.g., ICNNs)

Sensitivity analysis (differentiable logistic regression)

25Brandon Amos Learning with differentiable and amortized optimization

Differentiable CVXPY layers

Brandon Amos Learning with differentiable and amortized optimization 26

Before: 1k lines of code, now:𝑧?@A = argmin
B

1
2
𝑧C𝑄 𝑧? 𝑧 + 𝑞 𝑧? C𝑧

subject to 𝐴 𝑧? 𝑧 = 𝑏 𝑧?
𝐺 𝑧? 𝑧 ≤ ℎ 𝑧?

Parameters/Submodules : 𝑄, 𝑞, 𝐴, 𝑏, 𝐺, ℎ

Differentiable convex optimization layers. Agrawal*, Amos*, Barratt*, Boyd*, Diamond*, Kolter*, NeurIPS 2019.

(Officially part of CVXPY!)

This talk

Differentiable optimization — (
(&
𝑦⋆(𝑥)

Task-based optimization
Foundations: convex quadratic and cone programs
Applications

Amortized optimization — 2𝑦)(𝑥) ≈ 𝑦⋆(𝑥)
RL as amortized optimization
Foundations: modeling and loss choices
Applications
Amortization via learning latent subspaces

Brandon Amos Learning with differentiable and amortized optimization 27

x

y

f(y; x)

y?(x)
ŷµ(x)

x

y

f(y; x)

y?(x)

This talk: integrating optimization and learning
Key: view optimization as a function from the context 𝑥 to the solution 𝑦⋆(𝑥) ∈ argmin

"∈𝒞(&)
𝑓(𝑦; 𝑥)

Differentiable optimization — (
(&
𝑦⋆(𝑥)

Task-based optimization
Foundations: convex quadratic and cone programs
Applications

Amortized optimization — 2𝑦)(𝑥) ≈ 𝑦⋆(𝑥)
RL as amortized optimization
Foundations: modeling and loss choices
Applications
Amortization via learning latent subspaces

Brandon Amos Learning with differentiable and amortized optimization 28

x

y

f(y; x)

y?(x)
ŷµ(x)

x

y

f(y; x)

y?(x)

Deploying optimization and repeated solves

Brandon Amos Learning with differentiable and amortized optimization 29

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.
On the model-based stochastic value gradient for continuous reinforcement learning. Amos et al., L4DC 2021.

u uuaction action action

value

𝜋 𝑥% 𝜋 𝑥& 𝜋 𝑥%'

𝜋 𝑥 = argmax
7

𝑄(𝑥, 𝑢)

Repeatedly solved problems share structure

Brandon Amos Learning with differentiable and amortized optimization 30

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

x

y

f(y; x)

y?(x)

Amortization: approximate the solution map

A fast amortization model 2𝑦) can be 25,000 times faster than solving 𝑦⋆ from scratch for VAEs

Brandon Amos Learning with differentiable and amortized optimization 31

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

x

y

f(y; x)

y?(x)
ŷµ(x)

Amortization model 2𝑦)(𝑥) tries to approximate 𝑦⋆ 𝑥
Example: A neural network mapping from 𝑥 to the solution

Loss ℒ measures how well 2𝑦 fits 𝑦⋆ and optimized with min
)
ℒ 2𝑦)

Regression: ℒ 2𝑦) ≔ 𝔼< & 2𝑦) 𝑥 − 𝑦⋆ 𝑥 =
=

Objective: ℒ 2𝑦) ≔ 𝔼< & 𝑓(2𝑦) 𝑥)

Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Brandon Amos Learning with differentiable and amortized optimization 32

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Brandon Amos Learning with differentiable and amortized optimization 33

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Given a VAE model 𝑝 𝑥 = log ∫* 𝑝 𝑥 𝑧 𝑝(𝑥), encoding amortizes the optimization problem

𝜆⋆ 𝑥 = argmax
>

ELBO(𝜆; 𝑥) where ELBO 𝜆; 𝑥 ≔ 𝔼? *;> log 𝑝(𝑥|𝑧) − DKL 𝑞 𝑥; 𝜆 𝑝(𝑧)).

u
∏?(x) ∏̂µ(x)

ELBO(∏; x)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

𝜆𝑥% 𝑥& 𝑥'

Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Brandon Amos Learning with differentiable and amortized optimization 34

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Given a task 𝒯, amortize the computation of the optimal parameters of a model

𝜃⋆ 𝒯 = argmax
)

ℓ(𝒯, 𝜃)

Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Brandon Amos Learning with differentiable and amortized optimization 35

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Given a dictionary𝑊A of basis vectors and input 𝑥, a sparse code is recovered with

𝑦⋆ 𝑥 ∈ argmin
"

𝑥 −𝑊A𝑦 =
= + 𝛼 𝑦 .

Predictive sparse decomposition (PSD) and Learned ISTA (LISTA) amortize this problem
Kavukcuoglu, Ranzato, and LeCun, 2010. Gregor and LeCun, 2010.

Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Brandon Amos Learning with differentiable and amortized optimization 36

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Finding fixed points 𝑦 = 𝑔 𝑦 𝑥⋆ = argmin
&

1
2 𝑥

0𝑄𝑥 + 𝑝0𝑥

subject to 𝑏 − 𝐴𝑥 ∈ 𝒦

Find 𝑧⋆ s.t. ℛ 𝑧⋆, 𝜃 = 0

• The standard Euclidean projection onto the non-negative orthant R
n
+ is defined by

⇡(x) 2 argmin
y

1

2
kx� yk22 s. t. y � 0, (20)

and has a closed-form solution given the ReLU, i.e. ⇡(x) := max{0, x}.

• The interior of the unit hypercube [0, 1]
n can be projected onto with the entropy-

regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �Hb(y), (21)

where

Hb(y) =:=

X

i

yi log yi + (1� yi) log(1� yi)

!
(22)

is the binary entropy function. Eq. (21) has a closed-form solution given by the sigmoid
or logistic function, i.e. ⇡(x) := (1 + e

�x
)
�1.

• The interior of the (n� 1)-simplex defined by

�n�1 := {p 2 R
n | 1>p = 1 and p � 0} (23)

can be projected onto with the entropy-regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �H(y) s. t. 1

>
y = 1 (24)

where H(y) := �
P

i
yi log yi is the entropy function. Eq. (24) has a closed-form

solution given by the softargmax, i.e. ⇡(x)j = e
xj/
P

i
e
xi , which is historically referred

to as the softmax.

Going beyond these, we next cover differentiable projections onto convex cones, noting that
they can also be softened or regularized to help with continuity when composed with learning
and amortization methods. Ali et al. (2017); Busseti et al. (2019) discuss differentiating the
standard Euclidean projections onto these, including:

• The second-order, Lorentz, or ice cream cone defined by
Ksoc := {(x, y) 2 R

m�1 ⇥ R : kxk2 y}. The standard
Euclidean projection is given in closed form as

⇡(x, y) :=

8
><

>:

0 kxk2 �y

(x, y) kxk2 y

1
2(1 +

y

kxk2)(x, kxk2) otherwise.
(25)

and can be explicitly differentiated.

• The positive semidefinite cone Sm
+ of the space of m⇥m positive semidefinite matrices.

The Euclidean projection is obtained in closed-form by projecting the eigenvalues to
be non-negative with ⇡(X) :=

P
i
max{�i, 0}qiq>i , where the eigenvalue decomposition

of X is given by X =
P

i
�iqiq

>
i

. The derivative can be computed by differentiating
through the eigenvalue decomposition and projection of the eigenvalues.

18

KKT conditions

Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport)

Brandon Amos Learning with differentiable and amortized optimization 37

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

Meta Optimal Transport. Amos et al., 2022

Sinkhorn (converged, ground-truth)

↵0 ↵1
↵2

Meta OT (initial prediction)

↵0 ↵1
↵2

Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ⇡100 times
computationally cheaper and produces a nearly identical coupling.

↵

�

z1

z2

z

'̂✓

Parameters

 '̂✓

ICNN

T̂ (·) = rx '̂✓ (·)
Transport map

ResNet✓

ResNet✓

MLP✓

Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures ↵ and � into latents z that are decoded with an MLP into the parameters ' of an ICNN
dual potential '. The derivative of the ICNN provides the transport map T̂ .

Table 1: Discrete OT runtime (in seconds) to reach
a marginal error of 10�3 and Meta OT’s runtime.

MNIST Spherical

Sinkhorn 3.3 · 10�3 ±1.0 · 10�3 1.5 ±0.64
Meta OT + Sinkhorn 2.2 · 10�3 ±3.8 · 10�4 0.48 ±.24

Meta OT (Initial prediction) 4.6 · 10�5 ±2.8 · 10�6 4.4 · 10�5 ±3.2 · 10�6

Table 2: Color transfer runtimes and values.

Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10�3 ±2.7 · 10�4 0.90 ±6.08 · 10�2

+ W2GN 1k 0.93 ±2.27 · 10�2 1.0 ±2.57 · 10�3

2k 1.84 ±3.78 · 10�2 1.0 ±5.30 · 10�3

W2GN 1k 0.90 ±1.62 · 10�2 0.96 ±2.62 · 10�2

2k 1.81 ±3.05 · 10�2 0.99 ±1.14 · 10�2

We report the mean and (standard deviation) across 10 test instances.

Amortization objective. We build on the W2GN formulation [Korotin et al., 2019] and seek pa-
rameters '? optimizing the dual ICNN potentials ' and ' with L(';↵,�) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with '̂✓(↵,�) param-
eterized by ✓, resulting in a computationally efficient approximation to the optimum '̂✓ ⇡ '

?.
Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 [He et al., 2016] archi-
tecture for coupling image-based measures. We again emphasize that ↵,� used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
✓

E
(↵,�)⇠D

L('̂✓(↵,�);↵,�). (17)

As in the discrete setting, it does not require ground-truth solutions '? and we learn it with Adam.

4 Experiments

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
[Bradbury et al., 2018] as an extension to the the Optimal Transport Tools (OTT) package [Cuturi
et al., 2022]. All experiments take roughly ⇡2 hours to run on our single Quadro GP100 GPU.
App. C covers further experimental and implementation details. The source code to reproduce all of
our experiments is available at http://github.com/facebookresearch/meta-ot.

6

↵ � T#↵ T�1
�

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.

17

𝑇⋆(𝛼, 𝛽) ∈ argmin
:∈𝒞 B,C

𝔼&∼B 𝑥 − 𝑇 𝑥 =
=

Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport)

Brandon Amos Learning with differentiable and amortized optimization 38

Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning 2023.

𝑓E 𝑦 = − inf
&
𝑓 𝑥 − 𝑥0𝑦

On amortizing convex conjugates for optimal transport. Amos, ICLR 2023

Applications of amortized optimization
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport)

Learning with differentiable and amortized optimization

Foundations and Trends® in Machine Learning

Amortization via learning latent subspaces
Amortize the problem by learning a latent subspace of optimal solutions
Only search over optimal solutions rather than the entire space

Optimal controls over time — force on the cartpole

Time

Full control sequence space

Subspace of
optimal solutions

Cartpole videos

𝑥.::⋆ , 𝑢.::⋆ ∈ argmin
&":$,7":$

]
;

𝐶) 𝑥;, 𝑢; s.t. 𝑥. = 𝑥init 𝑥;-. = 𝑓) 𝑥;, 𝑢; 𝑢; ∈ 𝒰
cost dynamics constraintsinitial state

The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

Amortization via learning latent subspaces

Learning with differentiable and amortized optimization 41

Full control sequence space

Subspace of
optimal solutions

𝑢⋆ = argmin
:∈ ;,= D

𝑓 𝑢

Latent space
of optimal solutions

The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

Future directions and open questions
Goal: build intelligent systems that understand and interact with the world
Why? To advance scientific and engineering discoveries

Advancing optimization and machine learning foundations is crucial

Brandon Amos Learning with differentiable and amortized optimization 42

amortized optimizationdifferentiable optimization

x

y

f(y; x)

y?(x)
ŷµ(x)

x

y

f(y; x)

y?(x)

How to handle discrete spaces?

Brandon Amos Learning with differentiable and amortized optimization 43

𝑦⋆ 𝑥 ∈ argmin
"∈𝒞(&)

𝑓(𝑦; 𝑥)
context (or parameterization)objective

optimization variable constraints

optimal solution

x

y

f(y; x)

y?(x)

CombOptNet. Paulus, Rolínek, Musil, Amos, and Martius, ICML 2021.

x

y

f(y; x)

y?(x)

continuous discrete

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints 9

Table 1: Results for the keypoint matching demonstration.
Reported is the standard per-variable accuracy (%) metric
over 5 restarts. Column p ⇥ p corresponds to matching p
source keypoints to p target keypoints. Original BB-GM has
access to unary and quadratic costs; we also report perfor-
mance with access only to unary costs as in CombOptNet.

Method 4⇥ 4 5⇥ 5 6⇥ 6 7⇥ 7

CombOptNet 83.1 80.7 78.6 76.1

BB-GM (unary only) 84.3 81.6 79.0 76.5

BB-GM (unary & quad.) 84.3 82.9 80.5 79.8

edges in each of the two matched graphs. As these quanti-
ties vary over the dataset, the dimensionality varies as well.
To avoid these issues, we resort to a simplified setting.

First, we fix the number of keypoints in both images. For
each p = 4, 5, 6, 7, we generate an augmented dataset by
randomly removing additional keypoints in images with
more than p keypoints. The images with fewer keypoints
than p are dropped. Note that even for a fixed number of
keypoints the number of edges (and hence the quadratic cost
dimensionality) can vary. Therefore, we omit the quadratic
costs as an input to the ILP solver.

These simplifications result in a fixed ILP dimensionality of
n = p2. The number of learnable constraints coincides with
the number of constraints in the corresponding unary AS-
SIGNMENT problem, i.e. the combined number of keypoints
in both images (m = 2p).

The randomly initialized constraint set and the backbone
architecture that produces the cost vectors are learned simul-
taneously from pairs of predicted solutions and ground-truth
matchings using CombOptNet.

Results. We report two results for the BB-GM architec-
ture depending on the information available to the solver. In
the unary setting, the solver utilizes only unary costs, in the
quadratic setting, it utilizes both unary and quadratic costs.
The ILP solver is restricted to the unary setting.

Even though the task-agnostic CombOptNet is uninformed
about the underlying combinatorial problem, its perfor-
mance is very close to the privileged state-of-the-art method
BB-GM, especially when BB-GM is restricted to use the
same information (unary costs only). These results are espe-
cially satisfactory, considering that BB-GM outperforms the
previous state-of-the-art architecture (Fey et al., 2020) by
several percentage points on experiments of this difficulty.
Example matchings are shown in Fig. 13.

Figure 13: Example matchings predicted by CombOptNet.

5. Conclusion
We propose a method for integrating integer linear program
solvers into neural network architectures as layers. This is
enabled by providing gradients for both the cost terms and
the constraints of an ILP. The resulting end-to-end train-
able architectures are able to simultaneously extract features
from raw data and learn a suitable set of constraints that
specify the combinatorial problem. Thus, the architecture
learns to fit the right NP-hard problem needed to solve the
task. In that sense, it strives to achieve universal combinato-
rial expressivity in deep networks—opening many exciting
perspectives.

In the experiments, we demonstrate the flexibility of our
approach, using different input domains, natural language
and images, and different combinatorial problems with the
same CombOptNet module. In particular, for combinato-
rially hard problems we see a strong advantage of the new
architecture.

The potential of our method is highlighted by the demonstra-
tion on the keypoint matching benchmark. Unaware of the
underlying combinatorial problem, CombOptNet achieves a
performance that is not far behind architectures employing
dedicated state-of-the-art solvers.

In future work, we aim to make the number of constraints
flexible and to explore more problems with hybrid combina-
torial complexity and statistical learning aspects.

keypoint matching

knapsack problems
scheduling/assignment problems

Optimization (optimal transport) connects disparate spaces to enable knowledge transfer

How to transfer knowledge between structures?

Brandon Amos Learning with differentiable and amortized optimization 44

Cross-domain imitation learning via optimal transport. Fickinger, Cohen, Russell, Amos, ICLR 2022.

expert (3 dimensions) new system (5 dimensions)

Published as a conference paper at ICLR 2022

Figure 1: The Gromov-Wasserstein distance enables us to compare the stationary state-action distri-
butions of two agents with different dynamics and state-action spaces. We use it as a pseudo-reward
for cross-domain imitation learning.

Figure 2: Isometric policies (definition 2) have the same pairwise distances within the state-action
space of the stationary distributions. In Euclidean spaces, isometric transformations preserve these
pairwise distances and include rotations, translations, and reflections.

we call Gromov Wasserstein Imitation Learning (GWIL), that uses the Gromov-Wasserstein distance
to solve the benchmark. We formally characterize the scenario where GWIL preserves optimality
(theorem 1), revealing the possibilities and limitations. The construction of our proxy rewards to
optimize optimal transport quantities using RL generalizes previous work that assumes uniform
occupancy measures (Dadashi et al., 2020; Papagiannis & Li, 2020) and is of independent interest.
Our experiments show that GWIL learns optimal behaviors with a single demonstration from another
domain without any proxy tasks in non-trivial continuous control settings.

2 RELATED WORK

Imitation learning. An early approach to IL is Behavioral Cloning (Pomerleau, 1988; 1991) which
amounts to training a classifier or regressor via supervised learning to replicate the expert’s demon-
stration. Another key approach is Inverse Reinforcement Learning (Ng & Russell, 2000; Abbeel &
Ng, 2004; Abbeel et al., 2010), which aims at learning a reward function under which the observed
demonstration is optimal and can then be used to train a agent via RL. To bypass the need to learn
the expert’s reward function, Ho & Ermon (2016) show that IRL is a dual of an occupancy measure
matching problem and propose an adversarial objective whose optimization approximately recover
the expert’s state-action occupancy measure, and a practical algorithm that uses a generative ad-
versarial network (Goodfellow et al., 2014). While a number of recent work aims at improving this
algorithm relative to the training instability caused by the minimax optimization, Primal Wasserstein
Imitation Learning (PWIL) (Dadashi et al., 2020) and Sinkhorn Imitation Learning (SIL) (Papagian-
nis & Li, 2020) view IL as an optimal transport problem between occupancy measures to completely
eliminate the minimax objective and outperforms adversarial methods in terms of sample efficiency.
Heess et al. (2017); Peng et al. (2018); Zhu et al. (2018); Aytar et al. (2018) scale imitation learn-
ing to complex human-like locomotion and game behavior in non-trivial settings. Our work is an
extension of Dadashi et al. (2020); Papagiannis & Li (2020) from the Wasserstein to the Gromov-
Wasserstein setting. This takes us beyond limitation that the expert and imitator are in the same
domain and into the cross-domain setting between agents that live in different spaces.

Transfer learning across domains and morphologies. Work transferring knowledge between dif-
ferent domains in RL typically learns a mapping between the state and action spaces. Ammar et al.
(2015) use unsupervised manifold alignment to find a linear map between states that have similar

2

expert new system

How can latent representations gain an
awareness of unobserved concepts?

Brandon Amos Learning with differentiable and amortized optimization 45

Learning awareness models. Amos et al., ICLR 2018.

Situation awareness is the perception of the
elements in the environment within a volume
of time and space, and the comprehension of
their meaning, and the projection of their
status in the near future.

— Mica Endsley (1987)
Former Chief Scientist of the U.S. Air Force

How to model and control non-trivial systems?

Brandon Amos Learning with differentiable and amortized optimization 46

Published as a conference paper at ICLR 2021

Figure 3: Test-set motion predictions of two bouncing balls with collisions. The dashed black circle
indicates the initial positions of the balls and the solid black circle indicates the final positions. The
Neural Event ODE model is able to recover realistic event and state updates that exhibit floating
behavior (a-c) and straighter paths (d-e) than a RNN baseline. (c) shows a failure mode of the RNN
and Neural Event ODE models where the first collision is not correctly predicted.

This form appears in multiple areas such as neuronal dynamics (Abbott, 1999; Hodgkin & Huxley,
1952), inverse sampling (Steinbrecher & Shaw, 2008) and more generally temporal point processes.
We focus our discussion around temporal point processes as they encompass other applications.

Temporal point processes (TPPs) The TPP framework is designed for modeling random se-
quences of event times. Let H = {ti}ni=1 be a sequence of event times, with ti 2 R and i 2 Z+.
Additionally, let H(t) = {ti | ti < t, ti 2 H}, i.e. the history of events predating time t. A temporal
point process is then fully characterized by a conditional intensity function �⇤(t) = �(t | H(t)). The
star superscript is a common shorthand used to denote conditional dependence on the history (Daley
& Vere-Jones, 2003). The only condition is that �⇤(t) > 0. The joint log likelihood of observing H

starting with an initial time value at t0 is

log p ({ti}) =
nX

i=1

log �⇤(ti)�

Z tn

t0

�⇤(⌧) d⌧. (14)

In the context of flexible TPP models parameterized with neural networks, Mei & Eisner (2017)
used a Monte Carlo estimate of the integral in eq. (14), Omi et al. (2019) directly parameterized the
integral instead of the intensity function, and Jia & Benson (2019) noted that this integral can be
computed using an ODE solver. While these approaches can enable training flexible TPP models by
maximizing log-likelihood, it is much less straightforward to learn from simulations.

In the following, we discuss how the event function framework allows us to backpropagate through
simulations of TPPs. This enables training TPPs with the “reverse KL” objective. Another form

7

On the model-based stochastic value gradient for continuous reinforcement.
B. Amos et al., L4DC 2021. Learning Neural Event Functions for Ordinary Differential Equations.

Chen, Amos, Nickel, ICLR 2021.

Nocturne: a driving benchmark for multi-agent learning.
Vinitsky et al., NeurIPS Datasets and Benchmarks 2022

Riemannian Convex Potential Maps

Base RCPM Target

Figure 4. We trained a 7-block RCPM flow to learn to map a base density over ground mass on earth of 90 million years ago such a
density over current earth. To learn, we minimize the KL divergence between the model and the target distribution.

True RCPM

Figure 5. We trained an RCPM ⌫✓ to learn a 3-modal density ⌫ on
the torus T 2 = S1 ⇥ S1 (KL: 0.03, ESS: 94.7).

6.3. Case Study: Continental Drift
3

Finally, we consider a real-world application of our model
on geological data in the context of continental drift (Wilson,
1963). We aim to demonstrate the versatility and flexibil-
ity of the framework with three distinct settings: mapping
estimation, density estimation, and geodesic transport, all
through the lens of RCPMs.

Mapping estimation. We begin with mapping estimation.
We aim to learn a flow t mapping the base distribution of
ground mass on earth 90 million years ago (fig. 4, left), to a
ground mass distribution on current earth (fig. 4, right) – the
target. We train a 7-blocks RCPM with 3-layers blocks (see
sect. 5.1) by minimizing the KL divergence between the
model and target distributions. In fig. 4 (Middle), we show
the RCPM result, where it successfully learns to recover the
target density over current earth. Hence, the mapping t can
be used to map mass from “old” earth to current earth.

Transport geodesics. We demonstrate the use of trans-
port geodesics induced by exponential-map flows. We train
a 1-block RCPM which allows to recover approximations
of optimal-transport geodesics following eq. (10). These
curves are induced by transport mappings exp(tr�), t 2
[0, 1], which we visualize for a grid of starting points x0 on
the sphere in fig. 6. Such geodesics illustrate the optimal

3The source maps of figs. 4, 6 and 7 are © 2020 Colorado
Plateau Geosystems Inc.

Figure 6. Plot of the transport geodesics arising from a 1-block
RCPM trained in the setting of fig. 4, and following eq. (10). We
observe that samples stretch according to continental movements.

transport evolution of earth ground across times. This relates
to the well-known and studied geological process of conti-
nental drift (Wilson, 1963). North-American and Eurasian
tectonic plates move away from each other at a small rate
per year, which is illustrated in eq. (10). Denote as “junction”
the junction between Eurasian and North-American conti-
nents in “old” earth. We observe that particles x0 located
at the right of the junction will have geodesics transporting
them towards the right, while particles located at the left
of such junction will be transported towards the left, which
is the expected behavior given the evolution of continental
locations across time (see fig. 4 left and right).

Density estimation. Finally, we consider RCPMs as den-
sity estimation tools. In this setting, we aim to learn a flow
from a known base distribution (e.g., uniform on the sphere)
to a target distribution (e.g., distribution of mass over earth)
given samples from the latter. We train an RCPM model
with 6 blocks (and 1 layer per block) by maximum likeli-
hood. We show the results for this experiment in fig. 7. We
observe that the model is able to recover the distribution of
mass on current earth.

7. Conclusion

In this paper, we propose to build flows on compact Rieman-
nian manifolds following the celebrated theory of McCann
(2001), that is using exponential map applied to gradients

How to perform machine learning and
optimization over non-Euclidean spaces?

Brandon Amos Learning with differentiable and amortized optimization 47

Riemannian Convex Potential Maps

Figure 2. Illustration of a Riemannian convex potential map on a sphere. From left to right: 1) base distribution µ of a mixture of wrapped
Gaussians, 2) learned c-convex potential, 3) mesh grid distorted by the exponential map of the Riemannian gradient of the potential, 4)
transformed distribution ⌫.

2. Related Work

Euclidean potential flows. Most related to our work, is
the work by Huang et al. (2020) that leveraged Euclidean
optimal transport, parameterized using input convex neural
networks (ICNNs) (Amos et al., 2017) to construct univer-
sal normalizing flows on Euclidean spaces. Similarly, Ko-
rotin et al. (2021); Makkuva et al. (2020) compute optimal
transport maps via ICNNs. Riemannian optimal transport
replaces the standard Euclidean convex functions with so-
called c-convex or c-concave functions, and the Euclidean
translation by exponential map. Unfortunately, the notion
of c-convex or c-concave functions is intricate and a sim-
ple characterization of such functions is not known. Our
approach is to approximate arbitrary c-concave functions
on general Riemannian manifolds using discrete c-concave

functions that are simply the minimum of a finite number
of translated squared intrinsic distance functions, see fig. 1.
Intuitively, this construction resembles the approximation of
a Euclidean concave function as the minimum of a finite col-
lection of affine tangents. Although simple, we prove that
discrete c-concave functions are in fact dense in the space
of c-concave functions and therefore replacing general c-
concave functions with discrete c-concave functions leads
to a universal Riemannian OT model. Related, Gangbo &
McCann (1996) considered OT maps of discrete measures
which are defined via discrete c-concave functions.

Exponential map flows. Sei (2013); Rezende et al.
(2020) propose distinct parameterizations for c-convex func-
tions living on the sphere specifically. The latter applies it to
training flows on the sphere using the construction from Mc-
Cann’s theorem. Our work can be seen as a generalization
of the exponential-map approach in Rezende et al. (2020)
to arbitrary Riemannian manifolds. In contrast to this work,
the maps from our discrete c-concave layers are universal.

Other Riemannian flows. Mathieu & Nickel (2020); Lou
et al. (2020) propose extensions of continuous normalizing
flows to the Riemannian manifold setting. These are flexible
with respect to the choice of manifold, but their representa-
tional capacity is not well-understood and solving ODEs on
manifolds can be expensive. In parallel, Brehmer & Cran-
mer (2020) proposed a method for simultaneously learning

the manifold data lives on and a normalizing flow on the
learned manifold. Bose et al. (2020) consider hyperbolic
normalizing flows.

Optimal transport on Riemannian manifolds. Optimal
transport on spherical manifolds has been extensively stud-
ied from theoretical standpoints. Figalli & Rifford (2009);
Loeper (2009); Kim & McCann (2012) study the regular-
ity (continuity, smoothness) of transport maps on spheres
and other non-negatively curved manifolds. Regularity and
smoothness are more intricate on negatively curved mani-
folds, e.g. hyperbolic spaces. Nevertheless, several works
demonstrated that transport can be made smooth through
a minor change to the Riemannian cost (Lee & Li, 2012).
Alvarez-Melis et al. (2020); Hoyos-Idrobo (2020) leverage
this to learn transport maps on hyperbolic spaces, in which
case maps are parameterized as hyperbolic neural networks.

3. Background

In this section, we introduce the relevant background on
normalizing flows and Riemannian optimal transport theory.

3.1. Normalizing flows

Normalizing flows parameterize probability distributions
⌫ 2 P(M), on a manifold M, by pushing a simple base
(prior) distribution µ 2 P(M) through a diffeomorphism1

s : M ! M.

In turn, sampling from distribution ⌫ amounts to transform-
ing samples x taken from the base distribution via s:

y = s(x) ⇠ ⌫, where x ⇠ µ. (1)

In the language of measures, ⌫ is the push-forward of the
base measure µ through the transformation s, denoted by
⌫ = s#µ. If densities exist, then they adhere the change of
variables formula

⌫(y) = µ(x)| det Js(x)|�1
, (2)

where we slightly abuse notation by denoting the densities
again as µ, ⌫. In practice, a normalizing flow s is often

1A diffeomorphism is a differentiable bijective mapping with
a differentiable inverse.

Riemannian convex potential maps. Cohen*, Amos*, and Lipman, ICML 2021.

Riemannian Convex Potential Maps

Base RCPM Target

Figure 4. We trained a 7-block RCPM flow to learn to map a base density over ground mass on earth of 90 million years ago such a
density over current earth. To learn, we minimize the KL divergence between the model and the target distribution.

True RCPM

Figure 5. We trained an RCPM ⌫✓ to learn a 3-modal density ⌫ on
the torus T 2 = S1 ⇥ S1 (KL: 0.03, ESS: 94.7).

6.3. Case Study: Continental Drift
3

Finally, we consider a real-world application of our model
on geological data in the context of continental drift (Wilson,
1963). We aim to demonstrate the versatility and flexibil-
ity of the framework with three distinct settings: mapping
estimation, density estimation, and geodesic transport, all
through the lens of RCPMs.

Mapping estimation. We begin with mapping estimation.
We aim to learn a flow t mapping the base distribution of
ground mass on earth 90 million years ago (fig. 4, left), to a
ground mass distribution on current earth (fig. 4, right) – the
target. We train a 7-blocks RCPM with 3-layers blocks (see
sect. 5.1) by minimizing the KL divergence between the
model and target distributions. In fig. 4 (Middle), we show
the RCPM result, where it successfully learns to recover the
target density over current earth. Hence, the mapping t can
be used to map mass from “old” earth to current earth.

Transport geodesics. We demonstrate the use of trans-
port geodesics induced by exponential-map flows. We train
a 1-block RCPM which allows to recover approximations
of optimal-transport geodesics following eq. (10). These
curves are induced by transport mappings exp(tr�), t 2
[0, 1], which we visualize for a grid of starting points x0 on
the sphere in fig. 6. Such geodesics illustrate the optimal

3The source maps of figs. 4, 6 and 7 are © 2020 Colorado
Plateau Geosystems Inc.

Figure 6. Plot of the transport geodesics arising from a 1-block
RCPM trained in the setting of fig. 4, and following eq. (10). We
observe that samples stretch according to continental movements.

transport evolution of earth ground across times. This relates
to the well-known and studied geological process of conti-
nental drift (Wilson, 1963). North-American and Eurasian
tectonic plates move away from each other at a small rate
per year, which is illustrated in eq. (10). Denote as “junction”
the junction between Eurasian and North-American conti-
nents in “old” earth. We observe that particles x0 located
at the right of the junction will have geodesics transporting
them towards the right, while particles located at the left
of such junction will be transported towards the left, which
is the expected behavior given the evolution of continental
locations across time (see fig. 4 left and right).

Density estimation. Finally, we consider RCPMs as den-
sity estimation tools. In this setting, we aim to learn a flow
from a known base distribution (e.g., uniform on the sphere)
to a target distribution (e.g., distribution of mass over earth)
given samples from the latter. We train an RCPM model
with 6 blocks (and 1 layer per block) by maximum likeli-
hood. We show the results for this experiment in fig. 7. We
observe that the model is able to recover the distribution of
mass on current earth.

7. Conclusion

In this paper, we propose to build flows on compact Rieman-
nian manifolds following the celebrated theory of McCann
(2001), that is using exponential map applied to gradients

Earth 90 million years ago Earth today Optimal transport displacement

Base distribution 𝑐-convex function Push-forward distributionGrid warped by the transport

How to perform machine learning and
optimization over non-Euclidean spaces?Matching Normalizing Flows and Probability Paths on Manifolds

Figure 1. CNFM on a manifold (sphere): the trained CNF �t is pushing noise x ⇠ p0 to data �t(x) (top, from left t = 0 to right t = 1);
and the reverse time CNF taking data x ⇠ pdata to noise �1�t(x) (bottom).

3. Matching CNF and target probability

We start by considering a target probability density path
p 2 P(M). We will use the notation pt to denote the den-
sity at time t, namely, pt = p(t, ·). In a typical target path p,
p0 is some simple prior distribution, e.g., a distribution rep-
resenting pure noise, and p1 approximates the unknown data
distribution, denoted pdata and is practically approximated
by some empirical set of samples.

Our goal is to match p and the density path q 2 P(M),
generated by a CNF �t from the prior p0. The CNF �t

is defined by equation 1 via a learnable time dependent
vector field v✓ 2 X(M), with parameters ✓ 2 Rp. In more
detail, we define the CNF Matching (CNFM) problem as
the following optimization problem:

min
✓

d(p k q) (3a)

s.t. qt = �t⇤p0, t 2 [0, 1] (3b)

where d is a probability divergence between probability
density paths. That is, for density paths p, q 2 P(M),
d(p, q) � 0, and d(p, q) = 0 iff pt ⌘ qt for all t 2 [0, 1].

Adapting existing CNF approaches to optimize equation 3
would require evaluating qt, which is provided only through
solutions to an ODE (see also the discussion in Section 4.1),
and will therefore introduce a substantial computational
challenge. Instead, we construct a novel divergence d, called
the Probability Path Divergence (PPD), that does not require
sampling of q or enforcing equation 3b explicitly, and there-
fore sidesteps the need for solving ODE during training.
Furthermore, we will show that PPD bounds standard prob-
ability divergences such as total variation, ↵, and reverse
KL. Figure 1 depicts an example of a CNF, �t, trained with
CNFM and PPD using a target path p that is interpolating
between uniform and checkerboard data over the sphere. In
the top row we depict random uniform samples over the
sphere x ⇠ p0 (left) pushed by the CNF, i.e., �t(x), for
several times t 2 [0, 1], reaching the desired checkerboard
distribution at t = 1 (right). The bottom row shows the
CNF pulling, i.e., �1�t(x), data samples x ⇠ pdata (left),
reaching a uniform distribution at time t = 1 (right).

3.1. Logarithmic Mass Conservation

As a first step in constructing the PPD we derive a Partial
Differential Equation (PDE) involving the log density path
log p and a vector field v, such that it is satisfied iff the CNF
�t, defined by v, generates p. We name this equation the
Logarithmic Mass Conservation (LMC) formula.

Theorem 1. Consider a CNF �t : M ! M defined by
a smooth, time dependent vector field v 2 X(M) as in
equation 1, and a probability density path p 2 P(M).
Then p is generated by �t, i.e.,

pt = �t⇤p0, 8t 2 [0, 1] (4)

if and only if the LMC formula holds over [0, 1]⇥M:

@t log pt + hr log pt, vi+ div(v) = 0 (5)

The LMC formula can be proved with the aid of the mass
conservation formula, also known as the continuity equation
and equivalent to equation 5 (Villani, 2009):

@tpt + div(ptv) = 0, (6)

where div denotes the divergence operator over the manifold
M. We assumed p > 0 and therefore dividing both sides by
pt leads to

@tpt
pt

+
hrpt, vi+ ptdiv(v)

pt
= 0,

where we also used the fact that div(fv) = hrf, vi +
fdiv(v). Finally noting that @t log pt = @tpt

pt
, and

rx log pt = rxpt

pt
we get that equation 5 is equivalent to

equation 6. See Appendix A for more details.

The benefit of using the LMC formula over the standard
mass conservation formula is that it is formulated directly in
terms of the log probability log pt, which reduces numerical
issues for high dimensions.

Brandon Amos Learning with differentiable and amortized optimization 48

Matching Normalizing Flows and Probability Paths on Manifolds

Dataset Earthquake Flood Fire Volcano

Mixture vMF 0.59±0.01 1.09±0.01 �0.23±0.02 �0.31±0.07

Stereographic 0.43±0.04 0.99±0.04 �0.40±0.06 �0.64±0.20

Riemannian 0.19±0.04 0.90±0.03 �0.66±0.05 �0.97±0.15

Moser Flow �0.09±0.02 0.62±0.04 �1.03±0.03 �2.02±0.42

CNFM �0.38±0.01 0.25±0.02 �1.40±0.02 �2.38±0.16

Table 1. Negative log likelihood scores on the Earth and Climate
Dataset (Mathieu & Nickel, 2020).

Fire Flood Volcano Quakes

Figure 4. Earth and Climate dataset: generated samples from the
trained CNFM in blue, test samples in red. See table 1 for quanti-
tative results.

defined in equation 17 with p0 ⇠ N (x|0, I), the standard
normal distribution, and �1 = 0.01. For the spherical data
we used the target path p as defined in equation 20 with
1 = 5000. We used MLP of 3 layers of 256 neurons for
the R2 data, and 6 layers of 512 neurons for S2. We used
PPD with ` = 1. Figure 3 depicts the data samples yi
along side samples generated from the learned model, and
the model densities. Note the high similarity between the
learned and GT densities; for sphere visualizations we use
Mollweide projection.

5.2. Earth and climate dataset

In this experiment we considered the Earth and Climate
dataset curated in (Mathieu & Nickel, 2020). This dataset
contains locations of earthquakes, floods, fires, and volcano
eruptions on earth, represented as point locations on the 2D
sphere, S2 ⇢ R3. The target path p is defined as in equa-
tion 20 with 1 = 55K (best out of 1 2 {5K, 55K, 500K}).
We used the same architecture used in (Rozen et al., 2021), a
MLP with 6 layers of 512 neurons, PPD order ` = 2. Table
1 depicts the negative log likelihoods (NLLs) scores, where
CNFM improves state of the art by a large margin, where the
runner-up is Moser Flow (Rozen et al., 2021). Riemannian
CNF and other baselines are taken from (Mathieu & Nickel,
2020). Figure 4 visualizes generated samples (blue) and test
data samples (red).

5.3. Higher dimensional spheres

In this experiment we test the scaling of CNFM to higher
dimensional manifold data. We construct a family of chal-
lenging probability distributions, denoted rk, on S15 and

Figure 5. Left triplet shows the densities rk for k = 2, 3, 4 on
random cuts S2 ⇢ S15; right triplet visualizes the case k = 3 (on
a different random cut) from Table 2 with CNFM model density in
the middle, and S-FFJORD density on the right.

compare CNFM to several baselines. We start by defining rk
over S15 ⇢ R16: Henceforth, denote d = 15, and consider
an orthogonal set v1, . . . , vk, where 1 k d + 1. Let
s(x) =

Qk
i=1 sign(x

T vi). Define the probability density:

rk(x) =
2

|Sd|

(
1 if s(x) = 1

0 if s(x) = �1
(23)

To see rk is indeed a probability density, note that the
transformation x = (x1, . . . , xd+1) 7! (�x1, . . . , xd+1)
is a volume preserving transformation of Sd and maps
the set ⌦+ = Sd \

�
x 2 Rd+1|s(x) = 1

to ⌦� =

Sd \
�
x 2 Rd+1|s(x) = �1

, and vise versa. This means

that
R
⌦+

dVx =
R
⌦�

dVx and since Sd = ⌦+ [⌦� we
have that

R
⌦+

dVx =
��Sd

�� /2. Generating samples from rk

can be done by randomizing a uniform sample x over Sd,
if s(x) = 1, keep x, otherwise take (�x1, x2, . . . , xd+1).
Figure 5-left depicts several examples of this density by
visualizing random S2 cuts in S15; as k increases the
complexity of density increases. We created datasets for
k = 2, 3, 4 with 45K train samples and 5K test samples.

2 3 4

vMF-MM 1.23 1.31 1.33

S-FFJORD 0.77 0.97 1.04

CNFM 0.73 0.83 0.95

Table 2. NLLs on S15.

For baselines we use: vMF
mixture models (vMF-MM)
with 1K and 10K centers ran-
domized from the training data,
and scaling was chosen to be
the optimal for the test set. This
was done to compare to the
best possible vMF-MM model.
Furthremore, we compared to a version of manifold CNF
(Lou et al., 2020; Mathieu & Nickel, 2020; Falorsi & Forré,
2020): We consider the stereographic projection of the
sphere : Rd ! Sd, and used FFJORD (Grathwohl et al.,
2018) code adapted to the spherical case, denoted as S-
FFJORD. In this baseline, computing log probabilities over
the sphere is done by correcting for the stereographic projec-
tion, log p((u)) = log p(u)� 1

2 log det(D (u)
TD (u)),

where u 2 Rd, log p(u) is the Euclidean log probability
learned by FFJORD, D (u) 2 R(d+1)⇥d is the matrix of
partials of . Table 2 reports the NLL scores of CNFM and
the baselines across this dataset. Figure 5-right depicts an
example of random S2 cut of S15 for the k = 3 case.

Matching Normalizing Flows and Probability Paths on Manifolds. Ben-Hamu et al., ICML 2022.

Summary
Optimization expresses non-trivial reasoning operations

Integrates nicely with machine learning by seeing it as a function

Brandon Amos Learning with differentiable and amortized optimization 49

amortized optimization

x

y

f(y; x)

y?(x)
ŷµ(x)

differentiable optimization

x

y

f(y; x)

y?(x)

Learning with differentiable and
amortized optimization

Brandon Amos • Meta AI (FAIR) NYC
[ICML 2017] Differentiable QPs: OptNet
[ICML 2017] Input-convex neural networks
[NeurIPS 2017] Differentiable Task-based Model Learning
[NeurIPS 2018] Differentiable MPC for End-to-end Planning and Control
[ICLR 2018] Learning Awareness Models
[NeurIPS 2019] Differentiable Convex Optimization Layers
[Ph.D. Thesis 2019] Differentiable Optimization-Based Modeling for ML
[arXiv 2019] Differentiable Top-k and Multi-Label Projection
[arXiv 2019] Generalized Inner Loop Meta-Learning: ∇higher
[ICML 2020] Differentiable Cross-Entropy Method
[L4DC 2020] Objective Mismatch in MBRL
[MLCB 2020] Neural Potts Model
[ICML 2021] Differentiable Combinatorial Optimization: CombOptNet
[AISTATS 2021] Gromov-DTW time series alignment

Collaborators: Akshay Agrawal, Andrew Gordon Wilson, Anselm Paulus, Arnaud Fickinger, Byron Boots, Denis Yarats, Edward Grefenstette, Eugene Vinitsky,
Franziska Meier, Georg Martius, Giulia Luise, Heli Ben-Hamu, Hengyuan Hu, Ievgen Redko, Ivan Jimenez, Jacob Sacks, Jakob Foerster, Joseph Ortiz, Laurent
Dinh, Luis Pineda, Marc Deisenroth, Maximilian Nickel, Michal Rolínek, Mikael Henaff, Misha Denil, Mustafa Mukadam, Nando de Freitas, Nathan Lambert, Noam
Brown, Omry Yadan, Priya Donti, Ricky Chen, Roberto Calandra, Samuel Cohen, Samuel Stanton, Shane Barratt, Shobha Venkataraman, Soumith Chintala,
Stephen Boyd, Steven Diamond, Stuart Russell, Tom Erez, Tom Sercu, Vít Musil, Xiaomeng Yang, Yann LeCun, Yaron Lipman, Yuval Tassa, Zeming Lin, Zico Kolter

http://github.com/bamos/presentations

Brandon Amos
� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos

� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8

[ICML 2021] Riemannian Convex Potential Maps
[L4DC 2021] On the model-based stochastic value gradient
[ICLR 2021] Learning Neural Event Functions for ODEs
[ICLR 2021] Neural Spatio-Temporal Point Processes
[NeurIPS 2021] Online planning via RL amortization
[ICML 2022] Matching Flows and Probability Paths on Manifolds
[NeurIPS 2022] Theseus: Differentiable Nonlinear Optimization
[NeurIPS 2022] Differentiable Voronoi tessellation
[NeurIPS 2022] Nocturne self-driving benchmark
[ICLR 2022] Cross-Domain Imitation Learning via Optimal Transport
[arXiv 2022] Meta Optimal Transport
[ICLR 2023] On amortizing convex conjugates for optimal transport
[L4DC 2023] End-to-End Learning to Warm-Start for QPs
[Foundations and Trends in ML 2023] Tutorial on amortized optimization

https://arxiv.org/abs/1703.00443
https://arxiv.org/abs/1609.07152
http://papers.nips.cc/paper/7132-task-based-end-to-end-model-learning-in-stochastic-optimization
Differentiable%20MPC%20for%20End-to-end%20Planning%20and%20Control
https://arxiv.org/abs/1804.06318
http://papers.nips.cc/paper/9152-differentiable-convex-optimization-layers
https://github.com/bamos/thesis
https://arxiv.org/abs/1906.08707
https://arxiv.org/abs/1910.01727
https://arxiv.org/abs/1909.12830
https://arxiv.org/abs/2002.04523
https://www.biorxiv.org/content/10.1101/2021.04.08.439084v1.abstract
https://arxiv.org/abs/2105.02343
https://arxiv.org/abs/2006.12648
http://github.com/bamos/presentations
https://arxiv.org/abs/2106.10272
https://arxiv.org/abs/2008.12775
https://arxiv.org/abs/2011.03902
https://arxiv.org/abs/2011.04583
https://arxiv.org/abs/2109.15316
https://arxiv.org/abs/2207.04711
https://arxiv.org/abs/2207.09442
https://arxiv.org/abs/2203.06832
https://arxiv.org/abs/2206.09889
https://arxiv.org/abs/2110.03684
https://arxiv.org/abs/2206.05262
https://arxiv.org/abs/2210.12153
https://arxiv.org/abs/2212.08260
https://arxiv.org/abs/2202.00665

