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Optimal transport connects spaces

𝛼,𝛽 are measures       𝒞 𝛼,𝛽  is the set of valid couplings     𝑇  is a transport map from 𝛼 to 𝛽
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we also consider other/discrete OT formulations



Challenge: computing OT maps

Many OT problems are numerically solved
Improving OT solvers is active research

Solving multiple OT problems: even harder
Standard solution: independently solve
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we also consider other/discrete OT formulations



Meta Optimal Transport
Idea: predict the solution to OT problems with amortized optimization
Simultaneously solve many OT problems, sharing info between instances

Tutorial on amortized optimization. Brandon Amos. Foundations and Trends in ML, 2023.
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we also consider other/discrete OT formulations



Meta OT for Discrete OT (Sinkhorn)
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Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Marco Cuturi. NeurIPS 2013.
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Sinkhorn Meta OT + Sinkhorn

Figure 4: Sinkhorn convergence on test instances. Meta OT successfully predicts warm-start initial-
izations that significantly improve the convergence of Sinkhorn iterations.

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 5: Test set coupling predictions of the spherical transport problem. Meta OT’s initial pre-
diction is ⇡37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport maps T going to demand locations at the
end. The sphere is visualized with the Mercator projection.

4.1 Discrete OT between MNIST digits

Images provide a natural setting for Meta OT where the distribution over images provide the meta-
distribution D over OT problems. Given a pair of images ↵0 and ↵1, each grayscale image is
cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of
the atoms. The goal is to compute the optimal transport interpolation between the two measures
as in, e.g., Peyré et al. [2019, §7]. Formally, this means computing the optimal coupling P

? by
solving the entropic optimal transport problem between ↵0 and ↵1 and computing the interpolates
as ↵t = (t projy +(1� t) projx)#P

?, for t 2 [0, 1], where projx(x, y) := x and projy(x, y) = y.
We selected ✏ = 10�2 as app. A shows that it gives interpolations that are not too blurry or sharp.

Our Meta OT model f̂✓ (sect. 3.1) is an MLP that predicts the transport map between pairs of
MNIST digits. We train on every pair from the standard training dataset. Figure 2 shows that even
without fine-tuning, Meta OT’s predicted Wasserstein interpolations between the measures are close
to the ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence.
We then fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the
near-optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the
default initialization, and table 1 shows the runtime required to reach the default threshold.
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Wasserstein adversarial regularization
Wasserstein adversarial regularization for learning with label noise. Kilian Fatras et al., TPAMI 2021.
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Setting: Discrete OT for classification with label noise

OT is repeatedly solved across minibatches
Use Meta OT to learn better solutions



RGB color palette transport

Meta OT in continuous settings (W2GN)
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↵ � T#↵ T�1
# �

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The Seine by Claude Monet
(1872), obtained from WikiArt.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer

W2GN Meta OT + W2GN

Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.
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Wasserstein-2 Generative Networks. Alexander Korotin et al., ICLR 2021.
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↵ � T#↵ T�1
# �

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.
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More Meta OT color transfer predictions
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Conclusions
Deploying OT in real applications will almost always result in repeated solves
Use Meta OT and amortized optimization to learn a better solver
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