

Motivation: training models for downstream tasks \mathbf{M} etivetion important for the downstream task. The best use of the best of both worlds. The prediction model training in the original prediction \mathbf{p}

Challenge: models trained with prediction losses may struggle on downstream tasks

Why? objective mismatch, approximation errors, limited capacity, data

normalized decision quality (0=random, 1=oracle)

Background: task-based learning **Background**

Key idea: optimize the model with the task loss

Drawbacks of standard task-based losses

1. The model may **overfit to the task** and be unable to generalize to other tasks e.g., one task may care about colors while another may care about edges 2. The model may **forget how to predict in the original space** e.g., the task loss may just care about magnitudes rather than absolute values

- positive semi-definitive matrix
- of dim $n \times n$, where n is dimension of prediction space
-

 Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurIPS 2017. Decision-Focused Learning for Combinatorial Optimization. Wilder et al., AAAI 2019. Smart "Predict, then optimize." Elmachtoub and Grigas, Management Science 2022.

Task: find the optimal Q value function **Environment:** cartpole (#state dimensions: 4, #action dimensions: 2) Get the maximum return using trajectories from learned dynamics model **Experiment:** add noisy/distracting dimensions to the state space **Metric** Λ: **diagonal** and **not conditioned** on **Result: t**he learned metric downweights the noisy dimensions, allowing the prediction model to use its capacity on task relevant features only *Figure 5.* OMD (Nikishin et al., 2022) uses planning task loss to learn the model parameters using implicit gradients. TaskMet add one **Environment:** cartpole (#state dimensions: 4, #action dimensions: 2) \blacksquare prioritize $h \cdot$ diagonal and not conditional on x equality the metric to weight dimensions and state-action pairs different using ω

to train prediction model

Why?

Generalized Mahalanobis loss as the prediction loss

The **metric** $\Lambda_{\phi}(x)$, is a

 Control-oriented model-based reinforcement learning with implicit differentiation. Nikishin et al., AAAI 2022. @²! @✓@! nt learnind <u>@</u> *·* in et al..

The metric captures:

-
-

Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos TaskMet: Task-Driven Metric Learning for Model Learning TaskMet ²*.*⁸⁹ *[±]* ⁰*.*03 9*.*74*e*⁴ *[±]* ¹³*.*79*e*⁴ ⁴*.*69*e*⁴ *[±]* ⁰*.*56*e*⁴ B.3. Model-based reinforcement learning Following is the derivation of final gradient to learn from Eq. (11). Using the implicit function theorem and using it on

Predict utilities with a linear model for a downstream maximization task **Severe modeling errors** — must focus on high-utility points **Takeaway:** our learned metric tilts the model to control the maximum prediction

 $\mathcal{L}_{\text{task}}(\theta) \; := \; \mathbf{E}_{x,y \sim D}[g(z^\star(\hat{y}_\theta(x)))]$ **</u>** predicted stock price model (negated) portfolio returns portfolio allocation stock features

Implicit differentiation for end-to-end metric learning ierentiati

Setup: model predictions parameterize a decision-making optimization problem

Example: portfolio optimization

Experiments: decision-oriented model learning

Experiments: model-based RL ⁼r!*L*task(!?) *·* ents: mo *·* @*L*(!*,* ✓?) \overline{a} Ĉ <u>**************</u> ✓@*L*pred(✓*,*)

Our contribution: a task-driven end-to-end metric learning framework for training prediction models. This provides: reinforcements in noisy in noisy environments with districtions and the source of code to reproduce our experiments is available here.

- A method to train models for better performance on the downstream task • A method to learn a loss function using task information, which is then used
	- true model \sqrt{MSE} TaskMet model space task loss

 $\frac{1}{2}$

-
-
-
- indication that learning with the metric also contributes to a better dynamics model. The metric model is model

decision quality

Decision-Focused Learning without Differentiable Optimization. Shah et al., NeurIPS 2022.

$$
\phi^* := \underset{\theta}{\text{argmin}} \mathcal{L}_{task}(\phi) = \underset{\theta}{\text{argmin}} \mathcal{L}_{pred}(\theta, \phi)
$$

A model trained with MSE may still perform suboptimally on the downstream task. TaskMet trains the model to achieve minimal task loss.

Examples of two-stage settings performance on the metric and training data it was trained on, \blacksquare

Cubic setting

 $\overline{}$

Calculate
$$
\nabla_{\phi} \mathcal{L}_{\text{task}}(\theta^* (\phi))
$$
, to find ϕ^*

\n∇_φ $\mathcal{L}_{\text{task}}(\theta^* (\phi)) = \nabla_{\theta} \mathcal{L}_{\text{task}}(\theta) \Big|_{\theta = \theta^* (\phi)} \cdot \frac{\partial \theta^* (\phi)}{\partial \phi}$

\nof $\text{value using Implicit Function theorem}$

\nsk($\theta^*(\phi)$) = - ∇_θ $\mathcal{L}_{\text{task}}(\theta) \cdot \left(\frac{\partial \mathcal{L}_{\text{pred}}(\theta, \phi)}{\partial^2 \theta} \right)^{-1} \cdot \frac{\partial \mathcal{L}_{\text{pred}}(\theta, \phi)}{\partial \phi \partial \theta} \Big|_{\theta = \theta^*(\phi)}$

\noximately solve this with a **conjugate gradient** method

We need calculate
$$
\nabla_{\phi} \mathcal{L}_{\text{task}}(\theta^*(\phi))
$$
, to find ϕ^*
\n
$$
\nabla_{\phi} \mathcal{L}_{\text{task}}(\theta^*(\phi)) = \nabla_{\theta} \mathcal{L}_{\text{task}}(\theta) \Big|_{\theta = \theta^*(\phi)} \cdot \frac{\partial \theta^*(\phi)}{\partial \phi}
$$
\n
$$
\nabla_{\phi} \mathcal{L}_{\text{task}}(\theta^*(\phi)) = -\nabla_{\theta} \mathcal{L}_{\text{task}}(\theta) \cdot \left(\frac{\partial \mathcal{L}_{\text{pred}}(\theta, \phi)}{\partial^2 \theta}\right)^{-1} \cdot \frac{\partial \mathcal{L}_{\text{pred}}(\theta, \phi)}{\partial \phi \partial \theta} \Big|_{\theta = \theta^*(\phi)}
$$
\nWe approximately solve this with a **conjugate gradient** method

downstream task may require the model to focus on different

-
-

$$
\Lambda_{\phi} \xrightarrow{\theta} \mathcal{O}^{\star}(\phi)
$$
\n
$$
\Lambda_{\phi} \text{: targets}
$$
\n
$$
\Lambda_{\phi} \text{: metric}
$$

 $\partial \phi$