

Motivation: training models for downstream tasks

Challenge: models trained with prediction losses may struggle on downstream tasks

Why? objective mismatch, approximation errors, limited capacity, data **Our contribution:** a task-driven end-to-end metric learning framework for training prediction models. This provides:

- A method to train models for better performance on the downstream task • A method to learn a loss function using task information, which is then used
- to train prediction model

Examples of two-stage settings

Background: task-based learning

🞽 Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurIPS 2017. Secision-Focused Learning for Combinatorial Optimization. Wilder et al., AAAI 2019. Smart "Predict, then optimize." Elmachtoub and Grigas, Management Science 2022.

Key idea: optimize the model with the task loss

Drawbacks of standard task-based losses

1. The model may **overfit to the task** and be unable to generalize to other tasks e.g., one task may care about colors while another may care about edges 2. The model may **forget how to predict in the original space** e.g., the task loss may just care about magnitudes rather than absolute values

TaskMet: Task-Driven Metric Learning for Model Learning Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos

Why?

Generalized Mahalanobis loss as the prediction loss

The **metric** $\Lambda_{\phi}(x)$, is a

- positive semi-definitive matrix
- of dim $n \times n$, where n is dimension of prediction space

The metric captures:

End-to-end metric learning for model learning

- The key idea of the method is to learn an optimal metric end-to-end with a given task, which is then used to learn model via prediction loss.
- We use **bilevel optimization** for the metric and model learning:

$$\phi^{\star} := \underset{\phi}{\operatorname{argmin}} \mathcal{L}_{\underset{\theta}{\operatorname{task}}}(\phi)$$

where $\theta^{\star}(\phi) = \underset{\theta}{\operatorname{argmin}} \mathcal{L}_{\underset{\theta}{\operatorname{pred}}}(\theta, \phi)$

Implicit differentiation for end-to-end metric learning We need calculate $\nabla_{\phi} \mathcal{L}_{task}(\theta^{\star}(\phi))$, to find ϕ^{\star}

$$\nabla_{\phi} \mathcal{L}_{\text{task}} (\theta^{\star} (\phi)) = \nabla_{\theta} \mathcal{L}_{\text{task}} (\theta) \Big|_{\theta = \theta}$$

$$abla_{\phi} \mathcal{L}_{task}(\theta^{\star}(\phi)) = - \nabla_{\theta} \mathcal{L}_{task}(\theta) \cdot \left(\frac{\partial \mathcal{L}_{p}}{\partial \theta}\right)$$
We approximately solve this with a **conjugate**

$$\begin{array}{c} \arg\min \mathcal{L}_{\text{pred}}(\theta,\phi) & \hat{y} = f_{\theta^{\star}(\phi)}(x) \\ \hline \Lambda_{\phi} & \theta^{\star}(\phi) & \theta^{\star}(\phi) & \nabla_{\theta}\mathcal{L}_{\text{task}} \end{array} \end{array}$$

 $\partial \ heta^{\star} \ (\phi)$ $r_{\text{ored}}(\theta,\phi)$, $\partial^2 \theta$ י $heta{=} heta^{\star}\left(\phi
ight)$ te gradient method

x: features targets Λ_{ϕ} : metric $\mathcal{L}_{\text{pred}}(\theta,\phi) := \mathbb{E} \left\| \|f_{\theta}(x) - y\|_{\Lambda_{\phi}(x)}^{2} \right\|$

Experiments: model-based RL

Secontrol-oriented model-based reinforcement learning with implicit differentiation. Nikishin et al., AAAI 2022.

Task: find the optimal Q value function **Environment:** cartpole (#state dimensions: 4, #action dimensions: 2) Get the maximum return using trajectories from learned dynamics model **Experiment :** add noisy/distracting dimensions to the state space **Metric** Λ : diagonal and not conditioned on x**Result: t**he learned metric downweights the noisy dimensions, allowing the prediction model to use its capacity on task relevant features only

Shah et al., NeurIPS 2022.

Setup: model predictions parameterize a decision-making optimization problem **Example:** portfolio optimization

> decision quality (negated) portfolio returns portfolio allocation $\mathcal{L}_{\text{task}}(\theta) := \mathbf{E}_{x, y \sim D}[g(z^{\star}(\hat{y}_{\theta}(x)))]$

Cubic setting

Predict utilities with a linear model for a downstream maximization task **Severe modeling errors** — must focus on high-utility points **Takeaway:** our learned metric tilts the model to control the maximum prediction

Ground Truth **normalized decision quality (0=random, 1=oracle)** Problems y(x)Portfolio Budget $0.33 {\pm} 0.03$ $0.54{\pm}0.17$ -3 $0.91{\pm}0.06$ $0.25{\pm}0.02$ $0.81 {\pm} 0.11$ $0.34{\pm}0.03$ $\Lambda(x)$ 0.84 ± 0.105 0.17 ± 0.05 0.58 ± 0.14 0.30 ± 0.03 0.83 ± 0.12 0.33 ± 0.03 MSE puts equal **FaskMet prioritizes** weight on all points accurate predictior of high utility point

weig	ht of MSE te	erm		P
	Method	$\dot{\alpha}$	Cubic	E
	MSE		$-0.96{\pm}0.02$	0
	DFL	0	$0.61{\pm}0.74$	0
	DFL	10	$0.62{\pm}0.74$	0
	LODL	0	$0.96{\pm}0.005$	0
	LODL	10	$-0.95{\pm}0.005$	0
	TaskMet		$0.96{\pm}0.005$	0

Experiments: decision-oriented model learning

stock features predicted stock price model

