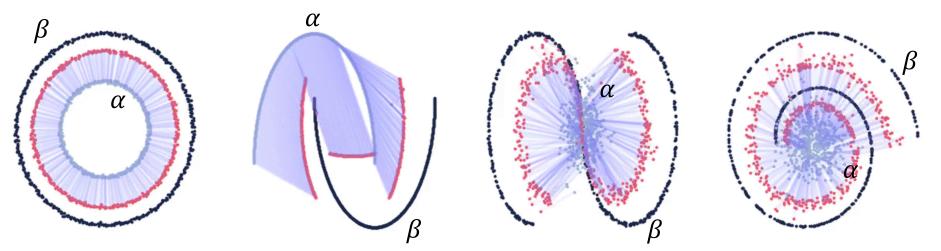


On amortizing convex conjugates for optimal transport


Brandon Amos • Meta AI (FAIR) NYC

<u>http://github.com/bamos/presentations</u>
<u>http://github.com/facebookresearch/w2ot</u>

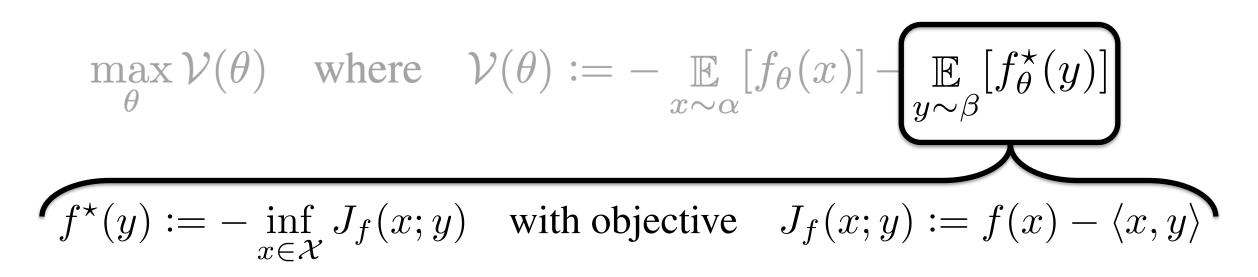
Optimal transport connects spaces

Monge (primal) $T^*(\alpha,\beta) \in \underset{T \in \mathcal{C}(\alpha,\beta)}{\operatorname{argmin}} \mathbb{E}_{x \sim \alpha} ||x - T(x)||_2^2$

 α, β are **measures** $C(\alpha, \beta)$ is the set of valid **coupling** *T* is a **transport map** from α to β

Duality and continuous OT

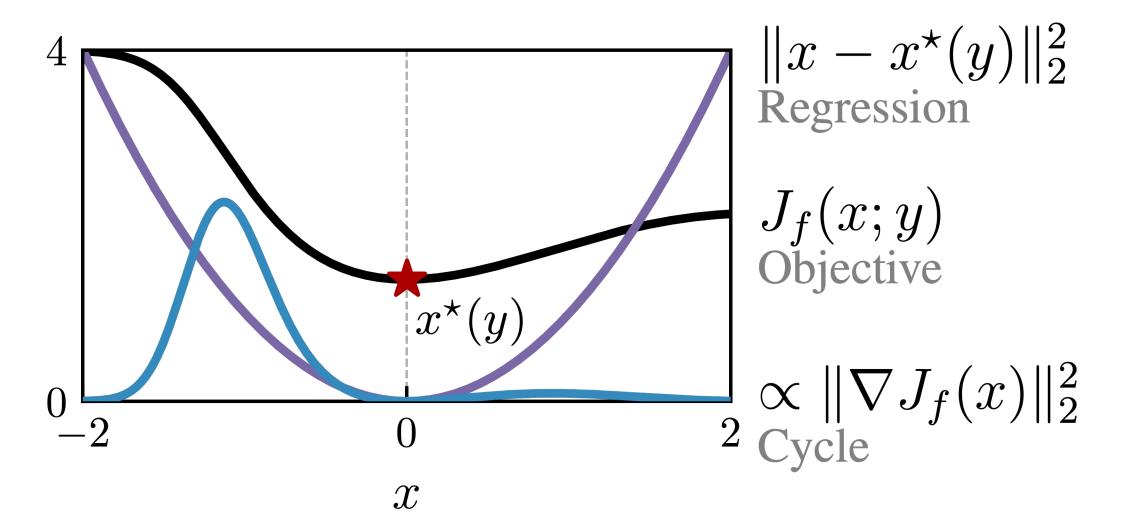
Monge (primal) $T^*(\alpha,\beta) \in \operatorname{argmin} \mathbb{E}_{x \sim \alpha} ||x - T(x)||_2^2$ $T \in \mathcal{C}(\alpha, \beta)$ $\mathbf{T}^{\star} = \nabla \hat{f} \text{ (Brenier's Theorem)}$ Kantorovich (dual) $\hat{f} \in \operatorname{argmax} - \mathbb{E}_{x \sim \alpha}[f(x)] - \mathbb{E}_{y \sim \beta}[f^{\star}(y)]$ $f \in \mathcal{L}^1(\alpha)$


 $f^{\star}(y) := -\inf_{x \in \mathcal{X}} J_f(x; y)$ with objective $J_f(x; y) := f(x) - \langle x, y \rangle$

Solving Kantorovich's dual with a neural net

$$\max_{\theta} \mathcal{V}(\theta) \quad \text{where} \quad \mathcal{V}(\theta) := - \mathop{\mathbb{E}}_{x \sim \alpha} [f_{\theta}(x)] - \mathop{\mathbb{E}}_{y \sim \beta} [f_{\theta}^{\star}(y)]$$

2-wasserstein approximation via restricted convex potentials. Taghvaei and Jalali, 2019. Three-Player Wasserstein GAN via Amortised Duality. Nhan Dam et al., IJCAI 2019. Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020. Wasserstein-2 generative networks. Korotin et al., ICLR 2020.


Focus: computing the conjugate

Amortization: Approximate the arginf with (another) neural network

2-wasserstein approximation via restricted convex potentials. Taghvaei and Jalali, 2019. Three-Player Wasserstein GAN via Amortised Duality. Nhan Dam et al., IJCAI 2019. Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020. Wasserstein-2 generative networks. Korotin et al., ICLR 2020.

Conjugate amortization loss choices

Wasserstein-2 benchmark results

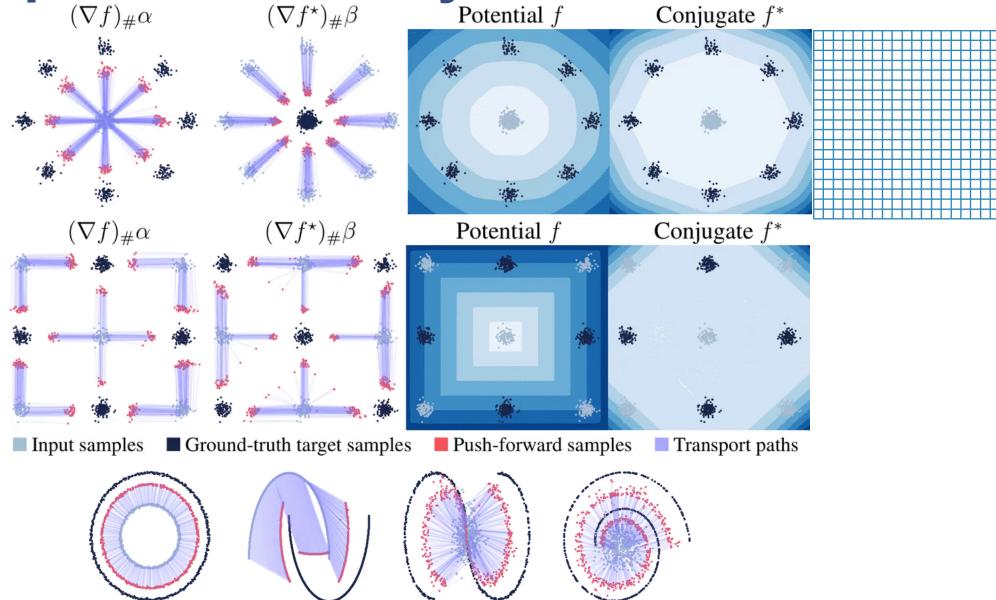
Do Neural Optimal Transport Solvers Work? Korotin et al., NeurIPS 2021.

Takeaway: amortization choice important, fine-tuning significantly helps

HD benchmarks: Unexplained Variance Percentage (UVP, lower is better)

	Baselines from Korotin et al. (2021a)									
-	Amortization loss	Conjugate solver	n=2	n=4	n=8	n = 16	n = 32	n = 64	n = 128	n = 256
*[W2]	Cycle	None	0.1	0.7	2.6	3.3	6.0	7.2	2.0	2.7
*[MMv1]	None	Adam	0.2	1.0	1.8	1.4	6.9	8.1	2.2	2.6
*[MMv2]	Objective	None	0.1	0.68	2.2	3.1	5.3	10.1	3.2	2.7
*[MM]	Objective	None	0.1	0.3	0.9	2.2	4.2	3.2	3.1	4.1

Potential model: the input convex neural network described in app. B.3							Amortization model: the MLP described in app. B.2				
Amortization loss	Conjugate solver	n = 2	n = 4	n=8	n = 16	n = 32	n = 64	n = 128	n = 256		
Cycle Objective	None None	$\left \begin{array}{c} 0.28 \pm \! 0.09 \\ 0.27 \pm \! 0.09 \end{array} \right $	$\begin{array}{c} 0.90 \pm \! 0.11 \\ 0.78 \pm \! 0.12 \end{array}$	$\begin{array}{c} 2.23 \pm \! 0.20 \\ 1.78 \pm \! 0.26 \end{array}$	$\begin{array}{c} 3.03 \pm \! 0.06 \\ 2.00 \pm \! 0.11 \end{array}$	5.32 ± 0.14 >100	8.79 ±0.16 >100	5.66 ±0.45 >100	4.34 ±0.14 >100		
Cycle Objective Regression	L-BFGS L-BFGS L-BFGS	$ \begin{vmatrix} 0.26 \pm 0.09 \\ 0.26 \pm 0.09 \\ 0.26 \pm 0.09 \end{vmatrix} $	$\begin{array}{c} 0.77 \pm \! 0.11 \\ 0.79 \pm \! 0.12 \\ 0.78 \pm \! 0.12 \end{array}$	$\begin{array}{c} 1.63 \pm \! 0.28 \\ 1.63 \pm \! 0.30 \\ 1.64 \pm \! 0.29 \end{array}$	$\begin{array}{c} 1.15 \pm \! 0.14 \\ 1.12 \pm \! 0.11 \\ 1.14 \pm \! 0.12 \end{array}$	$\begin{array}{c} 2.02 \pm \! 0.10 \\ 1.92 \pm \! 0.19 \\ 1.93 \pm \! 0.20 \end{array}$	$\begin{array}{c} 4.48 \pm \! 0.89 \\ 4.40 \pm \! 0.79 \\ 4.41 \pm \! 0.74 \end{array}$	$\begin{array}{c} 1.65 \pm \! 0.10 \\ 1.64 \pm \! 0.11 \\ 1.69 \pm \! 0.11 \end{array}$	$\begin{array}{c} 5.93 \pm \! 9.43 \\ 2.24 \pm \! 0.13 \\ 2.21 \pm \! 0.15 \end{array}$		
Cycle Objective Regression	Adam Adam Adam	$ \begin{vmatrix} 0.26 \pm 0.09 \\ 0.26 \pm 0.09 \\ 0.35 \pm 0.07 \end{vmatrix} $	$\begin{array}{c} 0.79 \pm \! 0.11 \\ 0.79 \pm \! 0.14 \\ 0.81 \pm \! 0.12 \end{array}$	$\begin{array}{c} 1.62 \pm \! 0.29 \\ 1.62 \pm \! 0.31 \\ 1.61 \pm \! 0.32 \end{array}$	$\begin{array}{c} 1.14 \pm \! 0.12 \\ 1.08 \pm \! 0.14 \\ 1.09 \pm \! 0.11 \end{array}$	$\begin{array}{c} 1.95 \pm \! 0.21 \\ 1.89 \pm \! 0.19 \\ 1.85 \pm \! 0.20 \end{array}$	$\begin{array}{c} 4.55 \pm \! 0.62 \\ 4.23 \pm \! 0.76 \\ 4.42 \pm \! 0.68 \end{array}$	$\begin{array}{c} 1.88 \pm \! 0.26 \\ 1.59 \pm \! 0.12 \\ 1.63 \pm \! 0.08 \end{array}$	>100 1.99 ± 0.15 1.99 ± 0.16		

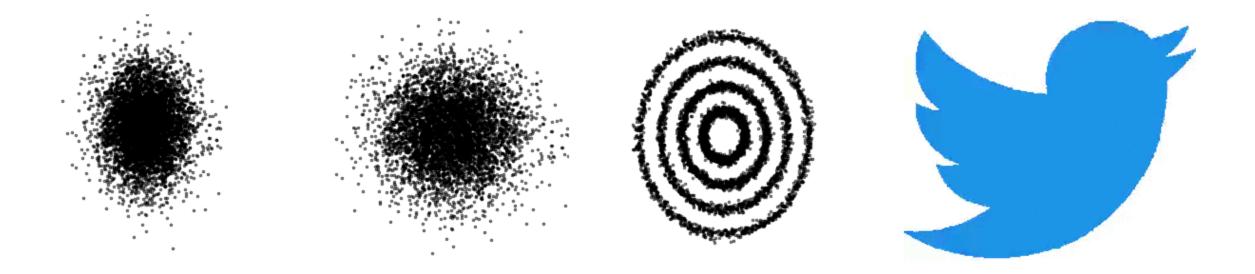

Potential model: t	Potential model: the non-convex neural network (MLP) described in app. B.4 Amortization model: the MLP described in app. B.4								
Amortization loss	Conjugate solver	n = 2	n = 4	n=8	n = 16	n = 32	n = 64	n = 128	n = 256
Cycle Objective	None None	0.05 ±0.00 >100	$0.35 \pm 0.01 \ >100$	$1.51 \pm 0.08 \ >100$	>100 >100	>100 >100	>100 >100	>100 >100	>100 >100
Cycle Objective Regression	L-BFGS L-BFGS L-BFGS	>100 0.03 ±0.00 0.03 ±0.00	>100 0.22 ± 0.01 0.22 ± 0.01	>100 0.60 ±0.03 0.61 ±0.04	>100 0.80 ± 0.11 0.77 ± 0.10	>100 2.09 ± 0.31 1.97 ± 0.38	>100 2.08 ± 0.40 2.08 ± 0.39	>100 0.67 ± 0.05 0.67 ± 0.05	>100 0.59 ± 0.04 0.65 ± 0.07
Cycle Objective Regression	Adam Adam Adam	$ \begin{vmatrix} 0.18 \pm 0.03 \\ 0.06 \pm 0.01 \\ 0.22 \pm 0.01 \end{vmatrix} $	$\begin{array}{c} 0.69 \pm \!\! 0.56 \\ 0.26 \pm \!\! 0.02 \\ 0.28 \pm \!\! 0.02 \end{array}$	$\begin{array}{c} 1.62 \pm \!$	>100 0.81 ±0.10 0.80 ±0.10	>100 1.99 ±0.32 2.07 ±0.38	>100 2.21 ± 0.32 2.37 ± 0.46	>100 0.77 ± 0.05 0.77 ± 0.06	>100 0.66 ± 0.07 0.75 ± 0.09
Improvement fact	tor over prior work	3.3	3.1	3.0	1.8	2.7	1.5	3.0	4.4

CelebA benchmarks: UVP

	Amortization loss	Conjugate solver	Potential Model	Early Generator	Mid Generator	Late Generator
*[W2]	Cycle	None	ConvICNN64	1.7	0.5	0.25
*[MM]	Objective	None	ResNet	2.2	0.9	0.53
*[MM-R [†]]	Objective	None	ResNet	1.4	0.4	0.22
	Cycle	None	ConvNet	>100	$26.50 \pm \! 60.14$	0.29 ± 0.59
	Objective	None	ConvNet	>100	0.29 ± 0.15	0.69 ± 0.90
	Cycle	Adam	ConvNet	0.65 ± 0.02	0.21 ± 0.00	0.11 ± 0.04
	Cycle	L-BFGS	ConvNet	0.62 ± 0.01	0.20 ± 0.00	0.09 ± 0.00
	Objective	Adam	ConvNet	0.65 ± 0.02	0.21 ± 0.00	0.11 ± 0.05
	Objective L-BFGS		ConvNet	0.61 ± 0.01	0.20 ± 0.00	0.09 ± 0.00
	Regression	Adam	ConvNet	0.66 ± 0.01	0.21 ± 0.00	0.12 ± 0.00
	Regression L-BFGS ConvNet Improvement factor over prior work		ConvNet	0.62 ± 0.01	0.20 ± 0.00	0.09 ± 0.01
-			2.3	2.0	2.4	

[†]the *reversed* direction from Korotin et al. (2021a), i.e. the potential model is associated with the β measure

Transport between synthetic measures



Learning flows via continuous OT

Continuous OT for flows:

- 1. Works only from samples (no likelihoods needed)
- 2. No need to explicitly enforce invertibility
- 3. No need to compute the log-det of the Jacobian

$$p_Y(y) = p_X(f^{-1}(y)) \left| \frac{\partial f^{-1}(y)}{\partial y} \right|$$

github.com/ott-jax/ott

Examples

Getting Started

downloads 65k build passing docs passing coverage 88%

Optimal Transport Tools (OTT)

Introduction

=

OTT is a JAX package that bundles a few utilities to compute, and differentiate as needed, the solution to optimal transport (OT) problems, taken in a fairly wide sense. For instance, OTT can of course compute Wasserstein (or Gromov-Wasserstein) distances between weighted clouds of points (or histograms) in a wide variety of scenarios, but also estimate Monge maps, Wasserstein barycenters, and help with simpler tasks such as differentiable approximations to ranking or even clustering.

 \square

On amortizing convex conjugates for optimal transport

Brandon Amos • Meta AI (FAIR) NYC

<u>http://github.com/bamos/presentations</u>
<u>http://github.com/facebookresearch/w2ot</u>