Differentiable optimization for robotics

Brandon Amos • Meta FAIR, NYC

I am not a roboticist, so don't expect any direct new robotics here

But I do know **AI, ML, and optimization**

- **Perspective:** robotics-relevant learning and optimization problems
- A tour through some of my favorite **ideas**, **foundations**, and **recent papers**
- Will emphasize the **engineering** side concepts most useful for building systems

Focus also on **continuous** optimization, but many concepts transfer to discrete settings

Optimization problems in robotics

solution (action or estimation) cost context (state of the world, or history)

```
y^*(x) \in \text{argmin } f(y; x)y \in \mathcal{C}(x)
```
optimization variables constraints (feasible given x)

Where AI/ML fit in

Many parts of the world need to be learned — dynamics, costs, goals, constraints, landmarks

$$
y_{\theta}^{\star}(x)\in\mathop{\rm argmin}_{y\in\mathcal{C}_{\theta}(x)}f_{\theta}(y;x)
$$

Adds $\boldsymbol{parameters}$ to the cost and constraints $\boldsymbol{and} \ y^{\star}_{\theta}(x)$

Differentiable optimization: end-to-end learn through the optimization **Amortized optimization:** predict the solutions when repeatedly solving

 $\pmb{\mathcal{X}}$

Why differentiable optimization (for robotics)?

Example: SLAM. Give the front-end networks information about how the back-end is performing **Question from earlier:** certifiable back-end optimization says nothing about errors in the front-end Differentiable optimization provides a way of coupling them

Past, Present, and Future of Simultaneous Localization And Mapping. Cadena et al., IEEE ToR 2016.

SDPRLayers: Certifiable Backpropagation Through Polynomial Optimization Problems in Robotics

Why differentiable optimization (for robotics)?

Example: SLAM. Give the front-end networks information about how the back-end is performing **Question from earlier:** certifiable back-end optimization says nothing about errors in the front-end Differentiable optimization provides a way of coupling them
SDPRLayers: Certifiable Backpropagation Through

Polynomial Optimization Problems in Robotics

Same end-to-end learning idea can be applied to every optimization problem from before

Optimization and Kahneman (and robotics)

Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

why? can be 25,000+ times faster

*also referred to as *learned* optimization

Why call it *amortized* **optimization?**

Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

to amortize: *to spread out an upfront cost over time*

Reinforcement learning and **control** (actor-critic methods, SAC, DDPG, GPS, BC)

$$
\pi(x) = \operatorname*{argmax}_{u} Q(x, u)
$$

Brandon Amos **Amortized optimization-based reasoning and AI** 99

Existing, widely-deployed uses of amortization *Tutorial on amortized optimization*. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and **control** (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Given a **VAE** model $p(x) = \log \int$ \overline{z} $p(x|z)p(x),$ $\bf{encoding}$ amortizes the optimization problem

$$
\lambda^\star(x) = \operatornamewithlimits{argmax}_{\lambda} \text{ELBO}(\lambda;x) \;\;\text{where}\;\; \text{ELBO}(\lambda;x) := \mathbb{E}_{q(z;\lambda)}[\log p(x|z)] - \text{D}_{\text{KL}}(q(x;\lambda)|p(z)).
$$

Reinforcement learning and **control** (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Given a **task** \mathcal{T} , amortize the **computation of the optimal parameters** of a model

$$
\theta^\star(\mathcal{T}) = \operatornamewithlimits{argmax}_\theta \ell(\mathcal{T}, \theta)
$$

Existing, widely-deployed uses of amortization *Tutorial on amortized optimization*. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and **control** (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Given a **dictionary** W_d of **basis vectors** and **input** x , a **sparse code** is recovered with

$$
y^\star(x)\in\operatornamewithlimits{argmin}_y\|x-W_dy\|_2^2+\alpha\|y\|_1
$$

Predictive sparse decomposition (PSD) and Learned ISTA (LISTA) **amortize this problem**

Kavukcuoglu, Ranzato, and LeCun, 2010. Gregor and LeCun, 2010.

is the binary entropy function. Eq. (21) has a closed-form solution given by the *sigmoid* or *logistic* function, i.e. ⇡(*x*) := (1 + *ex*)1. **■ Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023. Existing, widely-deployed uses of amortization**

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC) *n*¹ := *{^p* ² ^R*ⁿ [|]* ¹>*^p* = 1 and *^p* ⁰*}* (23)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS) standard Euclidean projections on the these standard \mathcal{L}

Existing, widely-deployed uses of amortization *Tutorial on amortized optimization*. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and **control** (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport

On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

Existing, widely-deployed uses of amortization *Tutorial on amortized optimization*. Amos, Foundations and Trends in Machine Learning 2023.

Reinforcement learning and **control** (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Reinforcement learning and **control** (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport

LLM attacks (AdvPrompter)

Foundations and Trends® in Machine Learning

Tutorial on amortized optimization

Learning to optimize over continuous spaces

Brandon-Amos, $Meta A1$ 16

Learning to optimize over continuous spaces

Brandon-Amos, $Meta A1$ 17

Differentiable optimization for robotics

- **1. Differentiable optimal control and MPC**
- **2. Differentiable non-linear least squares Theseus**

What is optimal control?

Optimal control is about 1) **modeling** part of the world and 2) **interacting** with that model

Optimal control in robotics

Optimal control is about 1) **modeling** part of the world and 2) interaction

the robotic system

e.g., the Newton-Euler equations of motion $M(q_t)\ddot{q_t} + n(q_t, \dot{q_t}) = \tau(q_t) + Bu_t$

Optimal control in robotics

Optimal control is about 1) **modeling** part of the world and 2) interaction

the robotic system e.g., the Newton-Euler equations of motion $M(q_t)\ddot{q_t} + n(q_t, \dot{q_t}) = \tau(q_t) + Bu_t$

RMA: Rapid Motor Adaptation for Legged Robots. Ashish Kumar et al., RSS 2021. *Learning high-speed flight in the wild.* Loquercio et al., Science Robotics 2021.

 \blacktriangleright Learning high-speed

Brandon Amos **Differentiable optimization for robotics** 21 and 21 an

Types of optimal control problems

can add many more constraints/variations

Optimal control is about 1) **modeling** part of the world and 2) **interacting** with that model

Where does machine learning fit in?

Optimal control is about 1) **modeling** part of the world and 2) **interacting** with that model

Machine learning (ML) is about using data to 1) **create abstractions**, and 2) **make predictions**

❗**[Control**→**ML]** interpret ML problems as control problems, solve with control methods **[ML**→**Control]** learn how to model and interact with the world from data (e.g., reinforcement learning) e.g., RL from human feedback for language models

How to differentiate the controller?

Differentiable MPC for End-to-end Planning and Control. Amos, Rodriguez, Sacks, Boots, Kolter, NeurIPS 2018.

- *The differentiable cross-entropy method.* Amos and Yarats, ICML 2020.
- *Learning convex optimization control policies.* Agrawal, Barratt, Boyd, Stellato, L4DC 2020.
- *Pontryagin differentiable programming*. Jin, Wang, Yang, Mou, NeurIPS 2020.
- *Infinite-Horizon Differentiable Model Predictive Control.* East et al., ICLR 2020.
- *NeuroMANCER.* Drgona et al., GitHub 2023.
- *Learning for CasADi: Data-driven Models in Numerical Optimization.* Salzmann et al., L4DC 2024.

Unrolling or autograd

$$
\hat{u}_{\theta}^{0} \implies \hat{u}_{\theta}^{1} \implies \cdots \implies \hat{u}_{\theta}^{K} \implies \hat{\pi}_{\theta}(x) \implies \mathcal{J}
$$

Idea: Implement controller, let **autodiff** do the rest Like MAML's unrolled gradient descent

Ideal when **unconstrained** with a **short horizon** Does **not** require a fixed-point or optimal solution **Instable and resource-intensive** for large horizons

Implicit differentiation

$$
\hat{\theta} \stackrel{K}{\iff} \hat{\pi}_{\theta}(x) \stackrel{J}{\iff} \mathcal{J} \quad D_{\theta} u^{\star}(\theta) = -D_{u} g(\theta, u^{\star}(\theta))^{-1} D_{\theta} g(\theta, u^{\star}(\theta))
$$

Idea: Differentiate controller's optimality conditions

Agnostic of the control algorithm **Ill-defined** if controller gives **suboptimal solution Memory** and **compute** efficient: free in some cases

Implicitly differentiating convex LQR control where the initial constraint *x*¹ = *x*init is represented by setting *F*⁰ = 0 and *f*⁰ = *x*init. Differentiating Equation (4) with respect to ⌧ ? *^t* yields *c*^{it}ly differ ? *t*1 0 tiating 6 4 *Ft*+1 <u>.</u> 7 7 7 \mathbf{D} anti⁻

Differentiable MPC for End-to-end Planning and Control. Amos, Rodriguez, Sacks, Boots, Kolter, NeurIPS 2018.

Differentiating non-convex MPC *^t* yields *L* DITTETENTI ? *t*1 0 J. = 0*,* (5) 6 6 4 *Ft*+1 $\overline{ }$ rl $\overline{ }$ $\overline{7}$ \blacktriangledown **V** P 5

Differentiable MPC for End-to-end Planning and Control. Amos, Rodriguez, Sacks, Boots, Kolter, NeurIPS 2018.

The Differentiable Cross-Entropy Method (DCEM)

The differentiable cross-entropy method. Amos and Yarats, ICML 2020.

The **cross-entropy method (CEM)** optimizer: 1. **Samples** from the domain with a Gaussian 2. **Updates** the Gaussian with the **top-k values**

Solves challenging **non-convex control** problems

The differentiable cross-entropy method (DCEM): Use **unrolling** to differentiate through CEM using: 1. the **reparameterization trick** for sampling 2. a **differentiable top-k operation** (LML)

Control and CVX

B Differentiable convex optimization layers. Agrawal, Amos, Barratt, Boyd, Diamond, New **Learning convex optimization control policies. Agrawal, Barratt, Boyd, Stell**

Metric learning via differentiable optimization

TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

Why? A (Mahalanobis) metric (in the prediction space) captures importance of features and samples

$$
\mathcal{L}_{\text{pred}}(\theta,\phi)\coloneqq\ \text{E}_{x,y\;\sim\;D}\left[\|f_{\theta}(x)-y\|_{\Lambda_{\phi}(x)}^2\right]\ =\text{E}_{x,y\;\sim\;D}\big[(f_{\theta}(x)-y)^T\Lambda_{\phi}(x)(f_{\theta}(x)-y)\big]
$$

Variations and other extensions

 Pontryagin differentiable programming. Jin, Wang, Yang, Mou, NeurIPS 2020. *Infinite-Horizon Differentiable Model Predictive Control.* East et al., ICLR 2020. *NeuroMANCER.* Drgona et al., GitHub 2023.

Learning for CasADi: Data-driven Models in Numerical Optimization. Salzmann et al., L4DC 2024.

Other end-to-end learning (SPO) literature

… among many others!

Using a Financial Training Criterion Rather than a Prediction Criterion*

Yoshua Bengio[†]

Gnu-RL: A Precocial Reinforcement Learning Solution for Building HVAC Control Using a Differentiable MPC Policy

Bingqing Chen Carnegie Mellon University Pittsburgh, PA, USA bingqinc@andrew.cmu.edu

Zicheng Cai Dell Technologies Austin, TX, USA zicheng.cai@dell.com

Mario Bergés Carnegie Mellon University Pittsburgh, PA, USA mberges@andrew.cmu.edu

Smart "Predict, then Optimize"

Adam N. Elmachtoub Department of Industrial Engineering and Operations Research and Data Science Institute, Columbia University, New York, NY 10027, adam@ieor.columbia.edu

Paul Grigas Department of Industrial Engineering and Operations Research, University of California, Berkeley, CA 94720, pgrigas@berkeley.edu

Task-based End-to-end Model Learning in Stochastic Optimization

Priva L. Donti Dept. of Computer Science Dept. of Engr. & Public Policy Carnegie Mellon University Pittsburgh, PA 15213 pdonti@cs.cmu.edu

Brandon Amos Dept. of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 bamos@cs.cmu.edu

J. Zico Kolter Dept. of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 zkolter@cs.cmu.edu

Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization

Bryan Wilder, Bistra Dilkina, Milind Tambe

Center for Artificial Intelligence in Society, University of Southern California {bwilder, dilkina, tambe} @usc.edu

Differentiable optimization for robotics

1. Differentiable optimal control and MPC

2. Differentiable non-linear least squares Theseus

Structure-from-Motion Revisited

Johannes L. Schönberger^{1,2*}, Jan-Michael Frahm¹

 $g²$ o: A General Framework for Graph Optimization

Kimera: an Open-Source Library for Real-Time **Metric-Semantic Localization and Mapping**

Antoni Rosinol, Marcus Abate, Yun Chang, Luca Carlone

Tracking many objects with many sensors

Hanna Pasula and Stuart Russell Michael Ostland and Ya'acov Ritov*

Generalized-ICP

Aleksandr V. Segal

Sebastian Thrun

Square Root SAM Simultaneous Localization and Mapping via Square Root Information Smoothing

Dirk Haehnel

Frank Dellaert and Michael Kaess

A Family of Iterative Gauss-Newton Shooting Methods for Nonlinear **Optimal Control**

Markus Giftthaler¹, Michael Neunert¹, Markus Stäuble¹, Jonas Buchli¹ and Moritz Diehl²

DART: Dense Articulated Real-Time Tracking

Tanner Schmidt, Richard Newcombe, Dieter Fox

Recovering 3D Shape and Motion from **Image Streams using Non-Linear Least** Squares

Richard Szeliski and Sing Bing Kang

Continuous-time Gaussian process motion planning via probabilistic inference

Mustafa Mukadam^{*}, Jing Dong^{*}, Xinyan Yan, Frank Dellaert and Byron Boots

Bundle Adjustment — A Modern Synthesis

Bill Triggs¹, Philip McLauchlan², Richard Hartley³ and Andrew Fitzgibbon⁴

Hybrid Contact Preintegration for Visual-Inertial-Contact State **Estimation Using Factor Graphs**

Ross Hartley, Maani Ghaffari Jadidi, Lu Gan, Jiunn-Kai Huang, Jessy W. Grizzle, and Ryan M. Eustice

Structure-from-Motion Revisited

Johannes L. Schönberger^{1,2*}, Jan-Michael Frahm¹

Kimera: an Open-Source Library for Real-T Metric-Semantic Localization and Mapping

Antoni Rosinol, Marcus Abate, Yun Chang, Luca Carlone

Tracking many objects with many sensors

Hanna Pasula and Stuart Russell Michael Ostland and Ya'acov Ritov*

Generalized-ICP

Dirk Haehnel

Aleksandr V. Segal

Sebastian Thrun

SLAM Bundle adjustment Structure from motion Tracking and estimation

…

Recovering 3D Shape and Motion from Image Streams using Non-Linear Least Squares Richard Szeliski and Sing Bing Kang

Lous-time Gaussian process nning via probabilistic

Jing Dong^{*}, Xinyan Yan, Frank Dellaert and Byron Boots

Adjustment – A Modern Synthesis

 1 cLauchlan², Richard Hartley³ and Andrew Fitzgibbon⁴

act Preintegration for Visual-Inertial-Contact State Estimation Using Factor Graphs

i Ghaffari Jadidi, Lu Gan, Jiunn-Kai Huang, Jessy W. Grizzle, and Ryan M. Eustice

All of these settings are non-linear least squares

$$
y^{\star}(w, c) = \underset{y}{\text{argmin}} \sum_{i} \|w_i c_i(y_i)\|^2
$$

All of these settings are non-linear least squares

and can be used in a larger, end-to-end learned pipeline

Theseus: A library for differentiable nonlinear optimization. Pineda et al., NeurIPS 2022.

All of these settings are non-linear least squares

and can be used in a larger, end-to-end learned pipeline

Theseus is an efficient application-agnostic library for building custom nonlinear optimization layers in PyTorch to support constructing various problems in robotics and vision as end-to-end differentiable architectures

https://sites.google.com/view/theseus-ai

Brandon Amos **Brandon Amos 2018 Differentiable optimization for robotics** 38

Differentiable NLLS before Theseus

Zhaoyang $Lv^{1,2}$ Frank Dellaert¹ James M. Rehg¹ Andreas Geiger²

DEEPV2D: VIDEO TO DEPTH WITH DIFFERENTIABLE **STRUCTURE FROM MOTION**

Zachary Teed Jia Deng

EPro-PnP probabilistic RGB image correspondences object pose

Deformable Correspondences (learnable 2D-3D coordinates & weights)

EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

Hansheng Chen,^{1,2,*} Pichao Wang^{2,†} Fan Wang² Wei Tian,^{1,†} Lu Xiong₁ Hao Li² ¹School of Automotive Studies, Tongji University ²Alibaba Group

Differentiable Gaussian Process Motion Planning

Mohak Bhardwaj¹, Byron Boots¹, and Mustafa Mukadam²

VSLAM: Automagically differentiable SLAM https://gradslam.github.io

Krishna Murthy J.*1,2,3, Soroush Saryazdi*⁴, Ganesh Iyer⁵, and Liam Paull^{†1,2,3,6}

- Prediction Ground-truth

(vision only)

Smoother

(heteroscedastic)

Differentiable Factor Graph Optimization for Learning Smoothers

(constant noise)

Brent Yi¹, Michelle A. Lee¹, Alina Kloss², Roberto Martín-Martín¹, and Jeannette Bohg¹

Differentiable NLLS before Theseus RGB image

Differentiable Gaussian Process Motion Planning

Mohak Bhardwaj¹, Byron Boots¹, and Mustafa Mukadam²

VSLAM: Automagically differentiable SLAM https://gradslam.github.io

Krishna Murthy J.*1,2,3, Soroush Saryazdi*4, Ganesh Iyer⁵, and Liam Paull^{†1,2,3,6}

(constant noise)

(vision only)

Smoother (heteroscedastic)

EPro-PnP

correspondences

 \longrightarrow probabilistic

object pose

Differentiable Factor Graph Optimization for Learning Smoothers

Brent Yi¹, Michelle A. Lee¹, Alina Kloss², Roberto Martín-Martín¹, and Jeannette Bohg¹

Theseus is a unified solver for all of them

Theseus: A library for differentiable nonlinear optimization. Pineda et al., NeurIPS 2022.

Theseus is an efficient application-agnostic library for building custom nonlinear optimization layers in PyTorch to support constructing various problems in robotics and vision as end-to-end differentiable architectures

https://sites.google.com/view/theseus-ai

Brandon Amos **Brandon Amos Differentiable optimization for robotics All the state of the**

Reception, extensions, and improvements

Differentiable Integrated Motion Prediction and Planning with Learnable Cost Function for **Autonomous Driving**

Zhiyu Huang, Haochen Liu, Jingda Wu, and Chen Lv, Senior Member, IEEE

SE(3)-DiffusionFields: Learning smooth cost functions for joint grasp and motion optimization through diffusion

Julen Urain^{*1}, Niklas Funk^{*1}, Jan Peters^{1,2,3,4}, Georgia Chalvatzaki¹

MidasTouch: Monte-Carlo inference over distributions across sliding touch

Neural Grasp Distance Fields for Robot Manipulation

Thomas Weng^{1,2}, David Held², Franziska Meier¹, and Mustafa Mukadam¹

PyPose: A Library for Robot Learning with Physics-based Optimization

Chen Wang^{1,2, \approx}, Dasong Gao^{1,3}, Kuan Xu⁴, Junyi Geng¹, Yaoyu Hu¹, Yuheng Qiu¹, Bowen Li¹, Fan Yang⁵, Brady Moon¹, Abhinav Pandey⁶, Aryan^{1,7}, Jiahe Xu¹, Tianhao Wu⁸, Haonan He¹, Daning Huang⁶, Zhongqiang Ren¹, Shibo Zhao¹, Taimeng Fu⁹, Pranay Reddy¹⁰, Xiao Lin¹¹, Wenshan Wang¹, Jingnan Shi³, Rajat Talak³, Kun Cao⁴, Yi Du², Han Wang⁴, Huai Yu¹², Shanzhao Wang¹³, Siyu Chen⁴, Ananth Kashyap¹⁴, Rohan Bandaru¹⁵, Karthik Dantu², Jiajun Wu¹⁶, Lihua Xie⁴, Luca Carlone³, Marco Hutter⁵, Sebastian Scherer¹

Taking an Electoral Photograph with **Neural Networks**

Theseus internals

Application Agnostic

Efficient

Theseus internals

Application Agnostic

Efficient

Backward modes for computing $D_n, y^*(x)$

Unrolled: differentiate through entire sequence of iterates

$$
y = y_1 \Rightarrow \cdots \rightarrow y_K \rightarrow y^*(w) \rightarrow \mathcal{L}(y^*(w))
$$

Truncated: unroll only through the last H iterates

$$
y_0 \rightarrow y_1 \rightarrow \cdots \rightarrow y_{K-H} \rightarrow \cdots \rightarrow y_K \rightarrow y^*(w) \rightarrow \mathcal{L}(y^*(w))
$$

Implicit: use implicit function theorem on optimality condition

$$
y_0 \to y_1 \to \cdots \to y_{K-H} \to \cdots \to y_K \to y^*(w) \to \mathcal{L}(y^*(w))
$$

$$
D_w y^*(w) = -D_y g(w, y^*(w))^{-1} D_w g(w, y^*(w))
$$

Direct loss: perturbation-based estimate of the derivatives

PyPose: faster implementations

PyPose: A Library for Robot Learning with Physics-based Optimization

Chen Wang^{1,2, \boxtimes}, Dasong Gao^{1,3}, Kuan Xu⁴, Junyi Geng¹, Yaoyu Hu¹, Yuheng Qiu¹, Bowen Li¹, Fan Yang⁵, Brady Moon¹, Abhinav Pandey⁶, Aryan^{1,7}, Jiahe Xu¹, Tianhao Wu⁸, Haonan He¹, Daning Huang⁶, Zhongqiang Ren¹, Shibo Zhao¹, Taimeng Fu⁹, Pranay Reddy¹⁰, Xiao Lin¹¹, Wenshan Wang¹, Jingnan Shi³, Rajat Talak³, Kun Cao⁴, Yi Du², Han Wang⁴, Huai Yu¹², Shanzhao Wang¹³, Siyu Chen⁴, Ananth Kashyap¹⁴, Rohan Bandaru¹⁵, Karthik Dantu², Jiajun Wu¹⁶, Lihua Xie⁴, Luca Carlone³, Marco Hutter⁵, Sebastian Scherer¹ https://pypose.org

PyPose: faster implementations

1. Differentiable optimal control and MPC

Chen Wang^{1,2, \boxtimes}, Dasong Gao^{1,3}, Kuan Xu⁴, Junyi Geng¹, Yaoyu Hu¹, Yuheng Qiu¹, Bowen Li¹, Fan Yang⁵, Brady Moon¹, Abhinav Pandey⁶, Aryan^{1,7}, Jiahe Xu¹, Tianhao Wu⁸, Haonan He¹, Daning Huang⁶, Zhongqiang Ren¹, Shibo Zhao¹, Taimeng Fu⁹, Pranay Reddy¹⁰, Xiao Lin¹¹, Wenshan Wang¹, Jingnan Shi³, Rajat Talak³, Kun Cao⁴, Yi Du², Han Wang⁴, Huai Yu¹², Shanzhao Wang¹³, Siyu Chen⁴, Ananth Kashyap¹⁴, Rohan Bandaru¹⁵, Karthik Dantu², Jiajun Wu¹⁶, Lihua Xie⁴, Luca Carlone³, Marco Hutter⁵, Sebastian Scherer¹ https://pypose.org

PyPose: faster implementations

1. Differentiable optimal control and MPC

2. Differentiable non-linear least squares

PyPose: A Library for Robot Learning with Physics-based Optimization

Chen Wang^{1,2, \boxtimes}, Dasong Gao^{1,3}, Kuan Xu⁴, Junyi Geng¹, Yaoyu Hu¹, Yuheng Qiu¹, Bowen Li¹, Fan Yang⁵, Brady Moon¹, Abhinav Pandey⁶, Aryan^{1,7}, Jiahe Xu¹, Tianhao Wu⁸, Haonan He¹, Daning Huang⁶, Zhongqiang Ren¹, Shibo Zhao¹, Taimeng Fu⁹, Pranay Reddy¹⁰, Xiao Lin¹¹, Wenshan Wang¹, Jingnan Shi³, Rajat Talak³, Kun Cao⁴, Yi Du², Han Wang⁴, Huai Yu¹², Shanzhao Wang¹³, Siyu Chen⁴, Ananth Kashyap¹⁴, Rohan Bandaru¹⁵, Karthik Dantu², Jiajun Wu¹⁶, Lihua Xie⁴, Luca Carlone³, Marco Hutter⁵, Sebastian Scherer¹ https://pypose.org

Differentiable optimization for robotics

Brandon Amos • Meta FAIR, NYC

1. Differentiable optimal control and MPC

2. Differentiable non-linear least squares Theseus

(next time: **amortized optimization for robotics**)

