End-to-end learning geomet dynamical systems, and regression Brandon Amos ! bda@meta.com • " bamos.github.io • # bdamos • ! brandondamos

Brandon Amos • Meta AI, NYC **http://github.com/bamos/presentations**

 \bigcirc http

Joint work with Aaron Lou, Aram-Alexandre Pooladian, Carles Domingo-Enrich, Dishank Bansal, Maxim

My main research is on (mostly Euclidean) **optimization**, **control**, and **generative models**

This talk: my perspective on intersections with learning graphs/geometry

Why learn geometries? (e.g., Manifolds, metrics, geodesic paths)

Machine learning, a probabilistic perspective. Murphy, 2014.

Only Bayes should learn a manifold. Hauberg, 2019.

Learning Riemannian Manifolds for Geodesic Motion Skills. Beik-Mohammadi et al., RSS 2021.

Our focus: uncover underlying structure from high-dimensional data for predictions

Demonstration Manifold

data

eodesid

Euclidean age desire

How to learn geometries?

- 1. metric (our focus)
- 2. surface
- 3. embeddings
- 4. latent models

- 1. fits to the data (standard)
	- a) geodesic distances
	- b) geodesic paths
	- c) surface reconstruction
- 2. works for a downstream task (our focus)

This talk: end-to-end learning geometries

1. graph embeddings 2. physical systems 3. regression

 Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

protein graph embedded in $\mathcal{M} = (\mathbb{R}^2, A_\theta)$

- *Learning Riemannian Manifolds for Geodesic Motion Skills.* Beik-Mohammadi et al., RSS 2021.
- *Riemannian Metric Learning via Optimal Transport.* Scarvelis and Solomon, ICLR 2023.
- *Neural Optimal Transport with Lagrangian Costs.* Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

robot demonstrations cell populations over time

Graph embeddings

What's the ideal geometry for the embeddings? *Spherical and hyperbolic embeddings of data.* Wilson et al., TPAMI 2014. *Poincaré Embeddings for Learning Hierarchical Representations.* Nickel and Kiela, NeurIPS 2017. $\Omega_0 > 1$ spherical *Learning mixed-curvature representations in products of model spaces*. Gu et al., ICLR 2019. **Hyperbolic space** (hierarchies) **Euclidean space** (general) Ω_0 <1 hyperbolic Machin Scientist EuclideanDevice Artifact **Neural Structure** $\Omega_0=1$ Plant Organism **Body Part** Thing Mammal **Physical Entity** Mammal imal MAP990006 Influenza Attribute Entity **Spherical space** (cycles) Property Color **Product manifolds** (mixtures) Matter Abstraction **Rread** Food **Relation** Material Event Knowledge Domai **Taxonomic Group** Action Mathematics **ungus Genus Hyperbolic Geometry** Metabolic Rate Image source: Gu et al. Image source: Gu et al. Image source: Nickel et al. Brandon Amos **End-to-end learning geometries**

Learning the embedding

Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

Idea: fix space \mathbb{R}^d equip with a parameterized *Riemannian metric A* **learn** θ **from downstream task** (e.g., distortion)

Geodesic distance given by $d_{\theta}(x, y) \triangleq \inf_{\gamma \in \mathcal{C}(x, y)} \int_{0}^{x} ||\dot{\gamma}_{t}||_{A_{\theta}(\gamma_{t})} dt$ with $\overline{1}$ $\bf{0}$, $\dot{\gamma_t}\|_{A_{\theta}(\gamma_t)}$ dt (numerically solved)

We can **differentiate the manifold operations** w.r.t.

Module 1 Pseudocode for Deep Riemannian Manifold Operations.

function MANIFOLDLOG (x, y, θ) $v := BVPSOLVE(x, y, GEOEQ_{\theta})$ save x, y, θ and v for the backwards pass. return y function LOGBACKWARDS(∇v) \hat{y} := MANIFOLDEXP $(x, v, \text{GeoEq}_{\theta})$ Il Construct Jacobian Matrix J for $i := 1$ to n do $\lambda_i, j_i, \lambda_i =$ EXPBACKWARDS (e_i) $J \coloneqq [j_1, \ldots, j_n]^\top$ $dx, \Delta d\theta := \text{EXPBACKWARDS}(\nabla v)$ $\nabla x, \nabla \theta := -(\underline{J}^{-1})^{\top} dx, -(\underline{J}^{-1})^{\top} d\theta$ $\nabla y = -(J^{-1})^{\top} \nabla v$ returns $\nabla x, \nabla y, \nabla \theta$

function MANIFOLDEXP (x, v, θ) $y := \text{ODEINT}(x, v, \text{GEOEq}_{\theta})$ save x, y, θ and y for the backwards pass. return y function EXPBACKWARDS (∇y) $\nabla x, \nabla v, \nabla \theta := \text{ODEINTBACKWARDS}(\nabla y)$ return $\nabla x, \nabla v, \nabla \theta$

function MANIFOLDINTERP (x, y, t, θ) $v \coloneqq$ MANIFOLDLOG (x, y, θ) **return** MANIFOLDEXP (x, tv, θ)

function MANIFOLDDISTANCE (x, y, θ) **return** MANIFOLDLOG (x, y, θ)

Graph embedding results

Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

Scaling issues beyond ~10

Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

Computing high-dimensional geodesics in a continuous space is hard

$$
d_{\theta}(x, y) \triangleq \inf_{\gamma \in \mathcal{C}(x, y)} \int_{0}^{1} ||\dot{\gamma}_{t}||_{A_{\theta}(\gamma_{t})} dt
$$

(very easy and scalable on, e.g., Euclidean, hyperbolic, spherical, and mixture

Brandon Amos **End-to-end learning geometries**

This talk: end-to-end learning geometries

1. graph embeddings 2. physical systems 3. regression

 Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

protein graph embedded in $\mathcal{M} = (\mathbb{R}^2, A_\theta)$

- *Learning Riemannian Manifolds for Geodesic Motion Skills.* Beik-Mohammadi et al., RSS 2021.
- *Riemannian Metric Learning via Optimal Transport.* Scarvelis and Solomon, ICLR 2023.
- *Neural Optimal Transport with Lagrangian Costs.* Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

robot demonstrations cell populations over time

Modeling dynamical s

Mechanics is the paradise of the mathematical s because by means of it one comes to the fruits of da Vinci (1459-1519), Noteb

Quote also given at the beginning of *Geometric Control of Mechanical Systems*, Bullo and Lewis, 2000.

e.g., stochastic o dimension *x*⁰ and *x*1. In this note, the state space of the system is taken to be the Euclidean space R*^m* for

values of states over time are referred to as *trajectories* and create curves or paths. Figure 2 shows an

Contr[olled dy](https://www.youtube.com/watch?v=xyqJ6_cdenI)namica[l system](https://www.youtube.com/watch?v=fn3KWM1kuAw)

often via the **Newton-Euler** equations of motion $\ M(q_t) \ddot{q_t}$ -

Brandon Amos **End-to-end learning geometries**

Machine learning way of lear

1. Collect data of the system 2. Throw neural networks at it

Continuous time

Definition 1 *An uncontrolled first-order dynamical system is modeled by a first-order di*↵*erential* **Stochastic Interpolants. Albergo et al., ICLR 2023.**

From Euclidean to geometric systems

why? modeling rotations, symmetries, obstacles, other parts of the

$$
\dot{x}_t = f(x_t) \quad \text{where } x_t \in \mathcal{M}, \, \dot{x}_t \in T_{x_t} \mathcal{M}
$$

Brandon Amos **End-to-end learning geometries**

setting 1: geometry is the demonstration manifold

Learning Riemannian Manifolds for Geodesic Motion Skills. Beik-Mohammadi et al., RSS 2021.

- fit a VAE to the observations
- 2. induce a metric from it
- 3. compute geodesics under the induced metric

$$
f_{\boldsymbol{\theta}}(\boldsymbol{z}) = \mu_{\boldsymbol{\theta}}(\boldsymbol{z}) + \mathrm{diag}(\epsilon) \sigma_{\boldsymbol{\theta}}(\boldsymbol{z}), \quad \epsilon \sim \mathcal{N}(\boldsymbol{0}, \mathbb{I}_D).
$$

$$
\bar{\boldsymbol{M}}(\boldsymbol{z}) = \boldsymbol{J}_{\mu_{\boldsymbol{\theta}}}(\boldsymbol{z})^{\mathsf{T}}\boldsymbol{J}_{\mu_{\boldsymbol{\theta}}}(\boldsymbol{z}) + \boldsymbol{J}_{\sigma_{\boldsymbol{\theta}}}(\boldsymbol{z})^{\mathsf{T}}\boldsymbol{J}_{\sigma_{\boldsymbol{\theta}}}(\boldsymbol{z})
$$

 $d_{\theta}(x, y) \triangleq \inf_{x \in \mathcal{C}(x)}$ $\gamma \in \overline{\mathcal{C}(x,y)}$ $\overline{1}$ $\overline{0}$ $\mathbf{1}_{1}$ $\frac{1}{2}$ $\|\dot{\gamma}_t\|_{M_\theta(\gamma_t)}$ dt

geodesic solver: with splines (usually in 2 or 3 dimensions)

(demonstrations)

setting 2: geometry is in the state space (particle system with unpaired data)

Riemannian Metric Learning via Optimal Transport. Scarvelis and Solomon, ICLR 2023.

Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

populations of cells over time

setting 2: geometry is in the state space (particle system with unpaired data)

Riemannian Metric Learning via Optimal Transport. Scarvelis and Solomon, ICLR 2023.

Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

setting 2: geometry is in the state space (particle system with unpaired data)

Riemannian Metric Learning via Optimal Transport. Scarvelis and Solomon, ICLR 2023.

Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

This talk: end-to-end learning geometries

1. graph embeddings 2. physical systems 3. regression

 Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

protein graph embedded in $\mathcal{M} = (\mathbb{R}^2, A_\theta)$

- *Learning Riemannian Manifolds for Geodesic Motion Skills.* Beik-Mohammadi et al., RSS 2021.
- *Riemannian Metric Learning via Optimal Transport.* Scarvelis and Solomon, ICLR 2023.
- *Neural Optimal Transport with Lagrangian Costs.* Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

robot demonstrations cell populations over time

The geometry of the prediction space

Why learn the prediction space geometry?

Why learn the prediction space geometry?

TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

problem: where does the geometry come from?

Reason 2. Emphasize predictions for **class 1 over 2 Reason 3.** Emphasize predictions for **image A over B**

Prediction geometry comes from downstream tasks

How to use the task information?

TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

Standard end-to-end task-based learning Taur approach: TaskMet

- *Task-based end-to-end model learning in stochastic optimization*. Donti, Amos, and Kolter, NeurIPS 2017.
- *Decision-Focused Learning for Combinatorial Optimization*. Wilder et al., AAAI 2019.
- *Smart "Predict, then optimize."* Elmachtoub and Grigas, Management Science 2022.

 \vee Uses predictive and task information $\mathsf{\times}$ Prediction model may forget about the prediction task **X** Prediction model may not generalize beyond the training task

Task information only influences the prediction loss, not the model **Why?** To retain the original prediction task

- \vee Uses predictive and task information
- \vee Prediction model is better at predicting
- \blacktriangledown Prediction model more likely to generalize to other tasks
- \vee Competitive performance with other task-based learning methods

Parameterizing the geometry: Mahalanobis metrics

TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

$$
\mathcal{L} = \mathbb{E}_{(x,y^\star)\sim\mathcal{D}} \left[\|\hat{y}_{\theta}(x) - y^\star\|_{\Lambda_{\phi}(x)}^2 \right] \frac{\mathbf{1}}{\mathbf{2}} \|\hat{y}_{\theta}(x) - y^\star\|_{\Lambda_{\phi}(x)}^2
$$

1. relative importance of features

up/down-weighting based on importance

2. relative importance of samples

via heteroscedastic metric $\Lambda(x)$

End-to-end learning the geometry

Experimental results

TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

Learning MDP dynamics with distractors

 Control-oriented model-based reinforcement learning with implicit differentiation. Nikishin et al., AAAI 2022.

\checkmark state-of-the-art task performance \checkmark lower prediction error

Standard DFL settings

 Decision-focused learning without decision-making. Shah et al., NeurIPS 2022.

\vee near-optimal task performance \checkmark lower prediction error

End-to-end learning geomet dynamical systems, and **Brandon Amos** ! bda@meta.com • " bamos.github.io • # bdamos • ! brandondamos

Brandon Amos • Meta AI, NYC **http://github.com/bamos/presentations** and present and points of the points of

\bigcirc http

1. graph embeddings 1. physical systems

 Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

protein graph embedded in $\mathcal{M} = (\mathbb{R}^2, A_\theta)$

- *Curring*

Curring Riemannian Manifolds for Geodesic Motion Skills.
 Curring Motion Matric Learning Vis Optimal Transport Beik-Mohammadi et al., RSS 2021.
	- *Riemannian Metric Learning via Optimal Transport.* Scarvelis and Solomon, ICLR 2023.
- **Research Scientistic City AI, AI, Fundamental AI, Fundamental AI Research Propertististic Presention Costs.**
Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023. *Neural Optimal Transport with Lagrangian Costs.* Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

robot demonstrations cell populations over ti

