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Disclaimer
My main research is on (mostly Euclidean) optimization, control, and generative models
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control multi-agent dynamics generative modeling and optimal transport

abstraction
prediction
modeling

machine learning

reasoning
interaction
control          

optimization

This talk: my perspective on intersections with learning graphs/geometry



Why learn geometries?

Our focus: uncover underlying structure from high-dimensional data for predictions
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📚 Machine learning, a probabilistic perspective. Murphy, 2014.
📚 Only Bayes should learn a manifold. Hauberg, 2019.
📚 Learning Riemannian Manifolds for Geodesic Motion Skills. Beik-Mohammadi et al., RSS 2021.

k-means clustering (Euclidean) spectral clustering (geometric)

Image source: Murphy, Fig 24.11 Image source: Beik-Mohammadi
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(e.g., Manifolds, metrics, geodesic paths)



How to learn geometries?

Brandon Amos End-to-end learning geometries 4

parameterize the geometry measure how well it works

1. metric (our focus)
2. surface
3. embeddings
4. latent models

1. fits to the data (standard)
a) geodesic distances
b) geodesic paths
c) surface reconstruction

2. works for a downstream task (our focus)



This talk: end-to-end learning geometries

📚 Deep Riemannian Manifold Learning.
      Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

📚 Learning Riemannian Manifolds for Geodesic Motion Skills.
      Beik-Mohammadi et al., RSS 2021.
📚 Riemannian Metric Learning via Optimal Transport.
      Scarvelis and Solomon, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs.
       Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

📚 TaskMet: Task-Driven Metric Learning for Model Learning.
      Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

protein graph embedded in ℳ = (ℝ!, 𝐴")

node embeddings
geodesics

linear regression

cell populations over timerobot demonstrations

1. graph embeddings 2. physical systems 3. regression



Graph embeddings
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Image source: Masui

graph node embeddings (e.g., in ℝ!)

downstream task

Learning: optimize embeddings to
preserve distances (or some other loss)

https://towardsdatascience.com/graph-neural-networks-with-pyg-on-node-classification-link-prediction-and-anomaly-detection-14aa38fe1275


What’s the ideal geometry for the embeddings?
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Euclidean space (general)

📚 Spherical and hyperbolic embeddings of data. Wilson et al., TPAMI 2014.
📚 Poincaré Embeddings for Learning Hierarchical Representations. Nickel and Kiela, NeurIPS 2017.
📚 Learning mixed-curvature representations in products of model spaces. Gu et al., ICLR 2019.

Hyperbolic space (hierarchies)

Image source: Nickel et al.

Spherical space (cycles)

Image source: Gu et al.

Product manifolds (mixtures)

Image source: Gu et al.

spherical

hyperbolic

Euclidean



Image source

𝛾⋆(𝑥, 𝑦)

𝑥

𝑦

Learning the embedding geometry
Idea: fix space ℝ! equip with a parameterized Riemannian metric 𝐴": ℝ! → 𝕊!
             learn 𝜃 from downstream task (e.g., distortion)

Geodesic distance given by                                                                         with minimizer 𝛾⋆

We can differentiate the manifold operations w.r.t. 𝜃
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📚 Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

𝑑" 𝑥, 𝑦 ≜ inf
#∈𝒞(',))

,
+

,
�̇�- .! #" 𝑑𝑡

(numerically solved)

https://geometry-central.net/surface/algorithms/flip_geodesics/


Graph embedding results
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📚 Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

Protein graph embedded in ℳ = (ℝ#, 𝐴$)

node embeddings

geodesics



Scaling issues beyond ~10 dimensions
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📚 Deep Riemannian Manifold Learning. Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

Image source

𝛾⋆(𝑥, 𝑦)

𝑥

𝑦
Computing high-dimensional geodesics in a continuous space is hard

𝑑/ 𝑥, 𝑦 ≜ inf
0∈𝒞(3,4)

)
5

6
�̇�7 8( 0) 𝑑𝑡

(very easy and scalable on, e.g., Euclidean, hyperbolic, spherical, and mixture spaces)

https://geometry-central.net/surface/algorithms/flip_geodesics/


This talk: end-to-end learning geometries

📚 Deep Riemannian Manifold Learning.
      Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

📚 Learning Riemannian Manifolds for Geodesic Motion Skills.
      Beik-Mohammadi et al., RSS 2021.
📚 Riemannian Metric Learning via Optimal Transport.
      Scarvelis and Solomon, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs.
       Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

📚 TaskMet: Task-Driven Metric Learning for Model Learning.
      Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

protein graph embedded in ℳ = (ℝ!, 𝐴")

node embeddings
geodesics

linear regression

cell populations over timerobot demonstrations

1. graph embeddings 2. physical systems 3. regression



Modeling dynamical systems
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Mechanics is the paradise of the mathematical sciences,
because by means of it one comes to the fruits of mathematics.

da Vinci (1459-1519), Notebooks, v. 1, ch. 20.
📚 Quote also given at the beginning of Geometric Control of Mechanical Systems, Bullo and Lewis, 2000.

1. Make observations 2. Come up with a theory

Source
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Continuous time Discrete time
�̇�- = 𝑓 𝑥-

x0 x1

Figure 2: A function xt ( ) providing a path between x0 and x1 with time derivatives ẋt ( ).

The first step is to understand how to mathematically represent the changing states of a system over
time, e.g. a pendulum swinging or a ball bouncing over time. Time is often represented as a real-valued
number t 2 R and interpreted as the relative time that has passed since some reference time, e.g. in seconds
or milliseconds. The state of a system is represented as a parametric function of time, e.g. x : I ! Rm where
I is an interval. A common notational convention is to notate this function with a subscript, i.e. xt := x(t),
and the derivative with respect to time at a point t using Newton’s dot notation, i.e. ẋt : I ! Rm. The
values of states over time are referred to as trajectories and create curves or paths. Figure 2 shows an
example of a 2-dimensional trajectory xt along with the derivatives ẋt and components across each spacial
dimension x0 and x1. In this note, the state space of the system is taken to be the Euclidean space Rm for
simplicity, but this makes it di�cult to capture non-Euclidean geometries such as rotational geometries that
the states of a system may live in — extensions for these non-Euclidean spaces are discussed in texts such
as Bullo and Lewis [2019].

Now given observations of a physical process over time, one can create a theory of how the motion was
produced by specifying xt, e.g. Newtonian mechanics for rigid-body motion. While there are many ways of
defining xt, a first-order ordinary di↵erential equation (ODE) is capable of expressing many deterministic
physical systems, which for the purposes of this note can be defined with:

Definition 1 An uncontrolled first-order dynamical system is modeled by a first-order di↵erential

equation ẋt = f(xt) for t � 0. States xt can be obtained by specifying an initial time and state and solving

an initial value problem. For example, if the initial state x0 is specified at time t = 0, the trajectory of states

for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs)ds. (1)

The dynamics of many deterministic systems in isolation are well-studied and classical topics throughout
physics and mechanics that are captured by definition 1. The ODE is usually written as a first-order system
to have a standard form — this is not limiting because any higher-order system can be transformed into a
first-order system. First-order systems can also be extended to geometries beyond Euclidean spaces, e.g. as
in Bullo and Lewis [2019].

We can now passively observe and model a first-order dynamical system with an ODE; the next step is to
define a way of interacting with the system that influence where the states are going to go. This is often an
important design decision when building systems as there could be many possible options for interacting with
it. For a robotic system, interaction may come from applying torques to the joints, varying the forces from
actuators, engines, or thrusters of an aircraft, changing the temperatures of a chemical system, or changing
the orientation of a steering wheel, rudder, or thruster. To do this, a control signal is usually added to the
model and separated from the other variables:

Definition 2 A controlled first-order dynamical system is a first-order dynamical system with states

xt : I ! R
m

where the first-order dynamics have an additional dependency on a control, or action, which
is a parametric function of t, i.e. ut : I ! Rn

. The ODE is specified by ẋt = ft(xt, ut) and can be integrated

as before, e.g. given an initial state x0, and controls ut, the trajectory of states for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs, us)ds. (2)

4

e.g., differential equations (ODE/PDEs)

d𝑥- = 𝑓 𝑥- d𝑡 + 𝐹 𝑥- d𝐵-

TODO
(Indirect) definition 3 ! optimality conditions (Hamilton-Jacobi-Bellman (PDE), Pontryagin’s principle

(ODE)) ! Discretize and solve
(Direct) definition 3 ! discretize to

argmin
z2Rp

g(z) subject to z 2 Cz (7)

Figure 7: TODO: continuous optimal control solutions

x0 x1

sampled trajectories mean trajectory E[xt]

Figure 8: TODO: sde

2.1.4 Solving discrete-time problems

TODO: Standard, show notation, point to other LQR/MPC references
box-DDP [Tassa et al., 2014]

2.2 Stochastic dynamics and control

stochastic process Gallager [2013]

2.2.1 . . . in continuous time

SDE books Øksendal and Øksendal [2003], Evans [2012]

Definition 5 (Controlled SDE dynamics)

dxt = ft(xt, ut)dt+ Ft(xt, ut)dWt (9)

(TODO: ẋ velocities) Integrating the SDE gives

xt = x0 +

Z
t

0
fs(xs, us)ds+

Z
t

0
Ft(xs, us)dWs (10)

controlled Itô di↵usion

[Yong and Zhou, 1999] [Fleming and Rishel, 2012] Finance [Touzi, 2010] [Frankowska et al., 2018]

Definition 6 (Continuous-time stochastic control) TODO

[Bonnans and Silva, 2012] PMP risk-averse stochastic OC problems [Bonalli and Bonnet, 2023]

2.2.2 . . . in discrete time

TODO
[Bertsekas and Shreve, 1996] [Tedrake, 2023, Chapter 14]
[Mesbah, 2016]

8

e.g., stochastic differential equations

𝑥-/, = 𝑓 𝑥- , 𝑤-
𝑤- ∼ 𝑝(𝑤)

e.g., Markov chains

𝑥-/, = 𝑓 𝑥-

e.g., Turing machines, games

📚 Learning Neural Event Functions for Ordinary Differential Equations.
     Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel, ICLR 2021.

Source

https://www.youtube.com/watch?v=eakKfY5aHmY
https://en.wikipedia.org/wiki/Orbital_mechanics


Controlled dynamical systems and robotics
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Learning high-speed flight. Loquercio et al., Science Robotics 2021.Source: Boston Dynamics

often via the Newton-Euler equations of motion

Source: Shadow Robotics

Source: SpaceX
Dynamical Systems, the Three-Body Problem and
Space Mission Design. Koon et al., 1999.

Source: Waymo

𝑀 𝑞- ̈𝑞- + 𝑛 𝑞- , �̇�- = 𝜏 𝑞- + 𝐵𝑢-

https://www.youtube.com/watch?v=fn3KWM1kuAw
https://www.youtube.com/watch?v=xyqJ6_cdenI
https://www.youtube.com/watch?v=ospoTAyEdDQ


Machine learning way of learning dynamics
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Continuous time Discrete time

1. Collect data of the system 2. Throw neural networks at it

Source: NVIDIA
📚 FourCastNet, Pathak et al., 2022.

�̇�- = 𝑓" 𝑥-

x0 x1

Figure 2: A function xt ( ) providing a path between x0 and x1 with time derivatives ẋt ( ).

The first step is to understand how to mathematically represent the changing states of a system over
time, e.g. a pendulum swinging or a ball bouncing over time. Time is often represented as a real-valued
number t 2 R and interpreted as the relative time that has passed since some reference time, e.g. in seconds
or milliseconds. The state of a system is represented as a parametric function of time, e.g. x : I ! Rm where
I is an interval. A common notational convention is to notate this function with a subscript, i.e. xt := x(t),
and the derivative with respect to time at a point t using Newton’s dot notation, i.e. ẋt : I ! Rm. The
values of states over time are referred to as trajectories and create curves or paths. Figure 2 shows an
example of a 2-dimensional trajectory xt along with the derivatives ẋt and components across each spacial
dimension x0 and x1. In this note, the state space of the system is taken to be the Euclidean space Rm for
simplicity, but this makes it di�cult to capture non-Euclidean geometries such as rotational geometries that
the states of a system may live in — extensions for these non-Euclidean spaces are discussed in texts such
as Bullo and Lewis [2019].

Now given observations of a physical process over time, one can create a theory of how the motion was
produced by specifying xt, e.g. Newtonian mechanics for rigid-body motion. While there are many ways of
defining xt, a first-order ordinary di↵erential equation (ODE) is capable of expressing many deterministic
physical systems, which for the purposes of this note can be defined with:

Definition 1 An uncontrolled first-order dynamical system is modeled by a first-order di↵erential

equation ẋt = f(xt) for t � 0. States xt can be obtained by specifying an initial time and state and solving

an initial value problem. For example, if the initial state x0 is specified at time t = 0, the trajectory of states

for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs)ds. (1)

The dynamics of many deterministic systems in isolation are well-studied and classical topics throughout
physics and mechanics that are captured by definition 1. The ODE is usually written as a first-order system
to have a standard form — this is not limiting because any higher-order system can be transformed into a
first-order system. First-order systems can also be extended to geometries beyond Euclidean spaces, e.g. as
in Bullo and Lewis [2019].

We can now passively observe and model a first-order dynamical system with an ODE; the next step is to
define a way of interacting with the system that influence where the states are going to go. This is often an
important design decision when building systems as there could be many possible options for interacting with
it. For a robotic system, interaction may come from applying torques to the joints, varying the forces from
actuators, engines, or thrusters of an aircraft, changing the temperatures of a chemical system, or changing
the orientation of a steering wheel, rudder, or thruster. To do this, a control signal is usually added to the
model and separated from the other variables:

Definition 2 A controlled first-order dynamical system is a first-order dynamical system with states

xt : I ! R
m

where the first-order dynamics have an additional dependency on a control, or action, which
is a parametric function of t, i.e. ut : I ! Rn

. The ODE is specified by ẋt = ft(xt, ut) and can be integrated

as before, e.g. given an initial state x0, and controls ut, the trajectory of states for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs, us)ds. (2)

4

e.g., Neural ODEs/PDEs, neural operators

a neural network

d𝑥- = 𝑓" 𝑥- d𝑡 + 𝐹" 𝑥- d𝐵-

TODO
(Indirect) definition 3 ! optimality conditions (Hamilton-Jacobi-Bellman (PDE), Pontryagin’s principle

(ODE)) ! Discretize and solve
(Direct) definition 3 ! discretize to

argmin
z2Rp

g(z) subject to z 2 Cz (7)

Figure 7: TODO: continuous optimal control solutions

x0 x1

sampled trajectories mean trajectory E[xt]

Figure 8: TODO: sde

2.1.4 Solving discrete-time problems

TODO: Standard, show notation, point to other LQR/MPC references
box-DDP [Tassa et al., 2014]

2.2 Stochastic dynamics and control

stochastic process Gallager [2013]

2.2.1 . . . in continuous time

SDE books Øksendal and Øksendal [2003], Evans [2012]

Definition 5 (Controlled SDE dynamics)

dxt = ft(xt, ut)dt+ Ft(xt, ut)dWt (9)

(TODO: ẋ velocities) Integrating the SDE gives

xt = x0 +

Z
t

0
fs(xs, us)ds+

Z
t

0
Ft(xs, us)dWs (10)

controlled Itô di↵usion

[Yong and Zhou, 1999] [Fleming and Rishel, 2012] Finance [Touzi, 2010] [Frankowska et al., 2018]

Definition 6 (Continuous-time stochastic control) TODO

[Bonnans and Silva, 2012] PMP risk-averse stochastic OC problems [Bonalli and Bonnet, 2023]

2.2.2 . . . in discrete time

TODO
[Bertsekas and Shreve, 1996] [Tedrake, 2023, Chapter 14]
[Mesbah, 2016]
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e.g., Neural SDEs, diffusion models, flow matching
📚 Deep unsupervised learning using nonequilibrium thermodynamics. Sohl-Dickstein et al., ICML 2015.
📚 Score-Based Generative Modeling through Stochastic Differential Equations. Song et al., ICLR 2021.
📚 Flow Matching for Generative Modeling. Lipman et al., ICLR 2023.
📚 Stochastic Interpolants. Albergo et al.,  ICLR 2023.

neural networks

14

𝑥-/, = 𝑓" 𝑥-

e.g., RNNs, LSTMs, Transformers
for language and other discrete-time sequential data

a neural network

𝑥-/, = 𝑓" 𝑥- , 𝑤-
𝑤- ∼ 𝑝"(𝑤)

e.g., RNNs with stochastic states

📚 A Recurrent Latent Variable Model for Sequential Data. Chung et al., NeurIPS 2015.
📚 Sequential Neural Models with Stochastic Layers. Fraccaro et al., NeurIPS 2016.

neural networks

📚 Learning Neural Constitutive Laws. Ma et al., ICML 2023.

Brandon Amos End-to-end learning geometries

https://www.youtube.com/watch?v=nuT_U1AQz3g


From Euclidean to geometric systems
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Source

degrees of freedom of a rigid body in 3D space�̇�! = 𝑓 𝑥! where 𝑥- ∈ ℳ, ̇	𝑥- ∈ 𝒯'"ℳ

why? modeling rotations, symmetries, obstacles, other parts of the open physical world

https://en.wikipedia.org/wiki/Six_degrees_of_freedom


What if we don’t know the geometry? Learn it!

setting 1: geometry is the demonstration manifold

1. fit a VAE to the observations
2. induce a metric from it
3. compute geodesics under the induced metric

Brandon Amos End-to-end learning geometries 16

📚 Learning Riemannian Manifolds for Geodesic Motion Skills. Beik-Mohammadi et al., RSS 2021.

Eucli
dean geodesic
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data
(demonstrations)

𝑑/ 𝑥, 𝑦 ≜ inf
0∈𝒞(3,4)

)
5

61
2
�̇�7 K( 0) 𝑑𝑡

geodesic solver: with splines (usually in 2 or 3 dimensions)



What if we don’t know the geometry? Learn it!

setting 2: geometry is in the state space (particle system with unpaired data)
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📚 Riemannian Metric Learning via Optimal Transport. Scarvelis and Solomon, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

populations of cells over time

synthetic data



What if we don’t know the geometry? Learn it!

setting 2: geometry is in the state space (particle system with unpaired data)
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📚 Riemannian Metric Learning via Optimal Transport. Scarvelis and Solomon, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

parameterize the geometry solve OT problem in that geometry

via a metric 𝐴

improve the metric

so the OT cost is lower



What if we don’t know the geometry? Learn it!

setting 2: geometry is in the state space (particle system with unpaired data)
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📚 Riemannian Metric Learning via Optimal Transport. Scarvelis and Solomon, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.



This talk: end-to-end learning geometries

📚 Deep Riemannian Manifold Learning.
      Lou, Nickel, Amos, NeurIPS 2020 Geo4dl workshop.

📚 Learning Riemannian Manifolds for Geodesic Motion Skills.
      Beik-Mohammadi et al., RSS 2021.
📚 Riemannian Metric Learning via Optimal Transport.
      Scarvelis and Solomon, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs.
       Pooladian, Domingo-Enrich, Chen, Amos, arXiv 2023.

📚 TaskMet: Task-Driven Metric Learning for Model Learning.
      Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

protein graph embedded in ℳ = (ℝ!, 𝐴")

node embeddings
geodesics

linear regression

cell populations over timerobot demonstrations

1. graph embeddings 2. physical systems 3. regression



The geometry of the prediction space

linear regression
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📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

Euclidean

non-Euclidean
(metric)

min
"
𝔼 #,% ∼𝒟 𝑓" 𝑥 − 𝑦 ( #

)



Why learn the prediction space geometry?
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Reason 2. Emphasize predictions for class 1 over 2
Reason 3. Emphasize predictions for image A over B

Reason 1. Emphasize predictions for y1 by making the loss higher

📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.



Why learn the prediction space geometry?
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Reason 2. Emphasize predictions for class 1 over 2
Reason 3. Emphasize predictions for image A over B

Reason 1. Emphasize predictions for y1 by making the loss higher

📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

problem: where does the geometry come from?



Prediction geometry comes from downstream tasks
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📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.



How to use the task information?
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📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

Our approach: TaskMetStandard end-to-end task-based learning
📚 Task-based end-to-end model learning in stochastic optimization.
     Donti, Amos, and Kolter, NeurIPS 2017.
📚 Decision-Focused Learning for Combinatorial Optimization. Wilder et al., AAAI 2019.
📚 Smart ”Predict, then optimize.” Elmachtoub and Grigas, Management Science 2022.

Task information only influences the prediction loss, not the model
Why? To retain the original prediction task

✔ Uses predictive and task information
✔ Prediction model is better at predicting
✔ Prediction model more likely to generalize to other tasks
✔ Competitive performance with other task-based learning methods

✔ Uses predictive and task information
❌ Prediction model may forget about the prediction task
❌ Prediction model may not generalize beyond the training task



Parameterizing the geometry: Mahalanobis metrics
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📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.

1. relative importance of features
     up/down-weighting based on importance
2. relative importance of samples
     via heteroscedastic metric Λ 𝑥



End-to-end learning the geometry
Formulate as a bilevel optimization problem
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𝜙⋆ 	≔ argmin
0

ℒtask(𝜃
⋆ 𝜙 )

where	 𝜃⋆ 𝜙 = argmin
"

ℒpred(𝜃, 𝜙)

∇0ℒtask 𝜃⋆ 𝜙 = ∇"ℒtask 𝜃 ]
"1"⋆ 0

⋅
𝜕	𝜃⋆ 𝜙
𝜕𝜙 calculate using the

implicit function theorem

𝜕ℒpred 𝜃, 𝜙
𝜕2	𝜃

3,

⋅
𝜕ℒpred 𝜃, 𝜙

𝜕𝜙	𝜕𝜃 ]
"1"⋆ 0

⇤� ✓?(�) Ltask

arg min
✓

Lpred(✓,�) ŷ = f✓?(�)(x)

@✓
?(�)

@�
via IFT r✓Ltask

x: features
y: targets
⇤�: metric
Lpred(✓,�) := E

h
kf✓(x)� yk2⇤�(x)

i

Figure 3: TaskMet learns a metric for predictions with the gradient from a downstream task loss.

Algorithm 1 TaskMet: Task-Driven Metric Learning for Model Learning
Models: predictor f✓ and metric ⇤� with initial parameterizations ✓ and �

while unconverged do
// approximate ✓

?(�) given the current metric ⇤�

for i in 1 . . .K do
✓  update(✓,r✓Lpred(✓,�)) // fit the predictor f✓ to the current metric loss (eq. (3))

end for
� update(�,r�Ltask) // update the metric ⇤� with the task loss (eq. (6))

end while
return optimal predictor f✓ and metric ⇤� solving the bi-level problem in eq. (4)

parameterization �, this derivative is

r�Ltask(✓
?(�)) = r✓Ltask(✓)

��
✓=✓?(�)

· @✓
?(�)

@�
(6)

To calculate the termr�Ltask(✓?(�)), we need to compute two gradient terms: r✓Ltask(✓)
��
✓=✓?(�)

and @✓
?(�)/@�. The former can be estimated in standard way since Ltask(✓) is an explicit function

of ✓. However, the latter cannot be directly calculated because ✓
? is a function of optimization

problem which is multiple iterations of gradient descent, as shown in eq. (5). Backpropping through
multiple iterations of gradient descent can be computationally expensive, so we use the implicit
function theorem (appendix A) on the first-order optimality condition of eq. (5), i.e. @Lpred(✓,�)

@✓ = 0.
Combining these, r�Ltask(✓?(�)) can be computed with

r�Ltask(✓
?(�)) = r✓Ltask(✓) ·�

✓
@
2Lpred(✓,�)

@✓2

◆�1
@
2Lpred(✓,�)

@�@✓

�����
✓=✓?(�)| {z }

@✓?/@�

(7)

The implicit derivatives in eq. (7) may be challenging to compute or store in memory because the
Hessian term @

2Lpred(✓,�)/@✓2 is the Hessian of the prediction loss with respect to the model’s
parameters. Approaches such as Lorraine et al. [2020] are able to scale related implicit differentiation
problems to models with millions of hyper-parameters. The main insight is that the Hessian does
not need to be explicitly formed or inverted and the entire implicit derivative term needed for
backpropagation can be obtained with an implicit solver. We follow Blondel et al. [2022] and
compute the implicit derivative by using conjugate gradient on the normal equations.

4 Experiments

We evaluate our method in two distinct settings: 1) when the downstream task involves an optimization
problem parameterized by the prediction model output, and 2) when the downstream task is another
learning task. For the first setting, we establish our baselines by replicating experiments from
previous works such as Shah et al. [2022] and Wilder et al. [2019]. These baselines encompass tasks
like portfolio optimization and budget allocation. In the second setting, we focus on model-based

5

optimize the metric with the task loss

solve the regression problem under that metric

📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.



Standard DFL settings
📚 Decision-focused learning without decision-making.
     Shah et al., NeurIPS 2022.

✔ near-optimal task performance
✔ lower prediction error

Experimental results

Brandon Amos End-to-end learning geometries 28

Learning MDP dynamics with distractors
📚 Control-oriented model-based reinforcement learning with implicit differentiation.
      Nikishin et al., AAAI 2022.

✔ state-of-the-art task performance
✔ lower prediction error

📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.
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