Neural Optimal Transport code with Lagrangian Costs Aram-Alexandre Pooladian Carles Domingo-Enrich **Brandon Amos Ricky T. Q. Chen** NYU, Meta Al NYU, Meta Al Meta Al Meta Al

Optimal transport (OT) with Lagrangian costs

둘 Optimal Transport: Old and New. Cedric Villani, 2008; Computational Optimal Transport. Gabriel Peyré and Marco Cuturi, 2018.

For a cost function $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, the (dual) **transport problem** is given by $OT_{c}(\mu,\nu) \coloneqq \sup_{y \in \mathcal{Y}} \int g^{c}(x) \, \mathrm{d}\mu(x) + \int g(y) \, \mathrm{d}\nu(y) \left[\underbrace{c\text{-transform:}}_{y \in \mathcal{Y}} J(y;x) \text{ where } J(y;x) \coloneqq c(x,y) - g(y) \right]$

Lagrangian costs: general-purpose cost function given by an optimization sub-routine over curves

$$c(x,y) \coloneqq \inf_{\gamma \in \mathcal{C}(x,y)} E(\gamma; x, y) \quad E(\gamma; x, y) \coloneqq \left\{ \int_0^1 \mathcal{L}(\gamma_t, \dot{\gamma}_t, t) \, \mathrm{d}t \right\}$$

encompasses ℓ_p norms, barrier functions, non-Euclidean metrics (geodesics), and more

Examples

1) Euclidean kinetic 3) Riemannian kinetic 2) Euclidean kinetic and potential $\mathcal{L}(\gamma_t, \dot{\gamma}_t, t; A) = \frac{1}{2} \| \dot{\gamma}_t \|_{A(\gamma_t)}^2.$ $\mathcal{L}(\gamma_t, \dot{\gamma}_t, t) \coloneqq \frac{1}{2} \| \dot{\gamma}_t \|^2 - U(\gamma_t),$ $\mathcal{L}(\gamma_t, \dot{\gamma}_t, t) \coloneqq \frac{1}{2} \| \dot{\gamma}_t \|^2$, c becomes the squared geodesic distance c becomes the squared Euclidean distance

OT map for general costs: Our goal is to learn
$$\hat{y}(x; c, g) \coloneqq rgmin_{y \in \mathcal{Y}} \{c(x, y) - g(y)\}$$
 .

Challenges: computing (1) the cost c, (2) the c-transform, (3) the optimal potential q**Our approach:** approximate (1), (2), (3) with neural networks (obviously!)

Neural OT with Lagrangian Costs

Seep generalized Schrödinger bridge. Liu et al., NeurIPS 2023; Neural Lagrangian Schrödinger bridge. Koshizuka and Sato, ICLR 2023; Optimal transport mapping via input convex neural networks Makkuva et al., ICML 2020; Wasserstein-2 Generative Networks, Korotin et al., ICLR 2021; On amortizing convex conjugates for optimal transport. Amos, ICLR 2023; Tutorial on amortized optimization. Amos, FnT in ML, 2023.

 $\ell_{\mathrm{dual}}(heta)\coloneqq$

Parametrization with neural networks: Optimize

(1) Lagrangian path φ_{η}

 $E(arphi_\eta;x,\hat{y}(x))\,\mathrm{d}\mu(x)\;.$

(2) OT map y_{ϕ} $\|\hat{y}(x)-y_{\phi}(x)\|\,\mathrm{d}\mu(x)\,.$ \min

(3) potential g_{θ}

 $g^c_{ heta}(x) \,\mathrm{d}\mu(x) +$ $g_{ heta}(y) \,\mathrm{d}
u(y)$

samples (source target push-forwards) transport paths

Algorithm 1 Neural Lagrangian Optimal Transport

inputs: measures μ and ν , Kantorovich potential g_{θ} , c-transform predictor y_{ϕ} , and spline predictor φ_{η} while unconverged do

```
sample batches \{x_i\}_{i=1}^N \sim \mu and \{y_i\}_{i=1}^N \sim \nu
```

obtain the amortized *c*-transform predictor $y_{\phi}(x_i)$ for $i \in [N]$

fine-tune the c-transform by numerically solving Eq. (9), warm-starting with $y_{\phi}(x_i)$

update the potential with gradient estimate of $\nabla_{\theta} \ell_{\text{dual}}$ (Eq. (18))

update the c-transform predictor y_{ϕ} using a gradient estimate of Eq. (20)

update the spline predictor φ_n using a gradient estimate of Eq. (23)

end while

 \min

return optimal parameters θ , ϕ , η

target samples push-forward samples transport paths source samples

Metric learning with Lagrangian OT

Figure 3. We successfully recover the metrics on the settings from Scarvelis and Solomon (2023).

Table 1. Alignment scores ℓ_{align} for metric recovery in Fig. 4. (higher is better)			
	Circle	Mass Splitting	X Paths
carvelis and Solomon (2023)	0.995	0.839	0.916
Our approach	0.997 ± 0.002	0.986 ± 0.001	0.957 ± 0.001

Figure 4. Our transport geodesics are able to reconstruct continuous versions of the original data that can predict the movement of individual particles given only samples from the first measure.