Optimal transport (OT) with Lagrangian costs

Metric learning with Lagrangian OT

Neural OT with Lagrangian Costs

Optimal Transport: Old and New. Cedric Villani, 2008; *Computational Optimal Transport*. Gabriel Peyré and Marco Cuturi, 2018.

For a cost function $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, the (dual) **transport problem** is given by $\operatorname{OT}_c(\mu, \nu) \coloneqq \sup_{x \in L^1(\Omega)} \int g^c(x) \, \mathrm{d}\mu(x) + \int g(y) \, \mathrm{d}\nu(y) \bigg[\underset{g^c(x)}{c\text{-transform:}} \lim_{x \to \infty} J(y; x) \text{ where } J(y; x) \coloneqq c(x, y) - g(y) \bigg]$ $y \in \mathcal{Y}$ $q\in L^1(\nu)$ J

> | encompasses ℓ_p norms, barrier functions, non-Euclidean metrics (geodesics), and more

Lagrangian costs: general-purpose cost function given by an **optimization sub-routine** over curves

$$
c(x,y) \coloneqq \inf_{\gamma \in \mathcal{C}(x,y)} E(\gamma;x,y) \quad E(\gamma;x,y) \coloneqq \left\{ \int_0^1 \mathcal{L}(\gamma_t, \dot{\gamma}_t, t) \, \mathrm{d}t \right\}
$$

Neural Optimal Transport with Lagrangian Costs Aram-Alexandre Pooladian Carles Domingo-Enrich Ricky T. Q. Chen Brandon Amos NYU, Meta AI NYU, Meta AI Meta AI Meta AI paper code

 Deep generalized Schrödinger bridge. Liu et al., NeurIPS 2023; *Neural Lagrangian Schrödinger bridge*. Koshizuka and Sato, ICLR 2023; *Optimal transport mapping via input convex neural networks* Makkuva et al., ICML 2020; *Wasserstein-2 Generative Networks*, Korotin et al., ICLR 2021; *On amortizing convex conjugates for optimal transport*. Amos, ICLR 2023; *Tutorial on amortized optimization*. Amos, FnT in ML, 2023.

 $\ell_{\rm dual}(\theta) \coloneqq$

Parametrization with neural networks: Optimize

(1) Lagrangian path φ_n (2) OT map $y^{}_\phi$ (3) potential $g^{}_\theta$

 ${}^{\prime}E(\varphi_\eta; x, \hat{y}(x))\,\mathrm{d}\mu(x)$.

 $\|\hat{y}(x)-y_{\phi}(x)\|\,\mathrm{d}\mu(x)$. \mid min

$g_{\theta}^c(x)\, \mathrm{d}\mu(x)\,+\,$ $g_\theta(y)\,\mathrm{d}\nu(y)$

samples (\blacksquare source \blacksquare target \blacksquare push-forwards) \blacksquare transport paths

viass splitting \rightarrow ///

ノノノ

Algorithm 1 Neural Lagrangian Optimal Transport

inputs: measures μ and ν , Kantorovich potential g_{θ} , c-transform predictor y_{ϕ} , and spline predictor φ_n while unconverged do

```
sample batches \{x_i\}_{i=1}^N \sim \mu and \{y_i\}_{i=1}^N \sim \nu
```
obtain the amortized c-transform predictor $y_{\phi}(x_i)$ for $i \in [N]$

fine-tune the c-transform by numerically solving Eq. (9), warm-starting with $y_{\phi}(x_i)$

update the potential with gradient estimate of $\nabla_{\theta} \ell_{\text{dual}}$ (Eq. (18))

update the *c*-transform predictor y_{ϕ} using a gradient estimate of Eq. (20)

update the spline predictor φ_n using a gradient estimate of Eq. (23)

end while

min

return optimal parameters θ , ϕ , η

(a) Obstacles

Let up a target samples **Let** push-forward samples **Let** transport paths source samples

individual particles given only samples from the first measure.

Figure 3. We successfully recover the metrics on the settings from Scarvelis and Solomon (2023).

Table 1. Alignment scores ℓ_{align} for metric recovery in Fig. 4. (higher is better) Circle **Mass Splitting** X Paths 0.995 0.916 0.839 Our approach 0.997 ± 0.002 $\mathbf{0.986} \pm \mathbf{0.001}$ $\mathbf{0.957} \pm \mathbf{0.001}$

OT map for general costs: Our goal is to learn
$$
\hat{y}(x; c, g) := \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \{c(x, y) - g(y)\}
$$
.

Challenges: computing (1) the cost c , (2) the c -transform, (3) the optimal potential g **Our approach:** approximate (1), (2), (3) with neural networks (obviously!)

Examples

1) Euclidean kinetic 2) Euclidean kinetic and potential 3) Riemannian kinetic 3($\gamma_t, \dot{\gamma}_t, t$) $:= \frac{1}{2} ||\dot{\gamma}_t||^2$, $\mathcal{L}(\gamma_t, \dot{\gamma}_t, t) := \frac{1}{2} ||\dot{\gamma}_t||^2 - U(\gamma_t)$, $\mathcal{L}(\gamma_t, \dot{\gamma}_t, t; A) = \frac{1}{2} ||\dot{\gamma}_t||^2_{A(\gamma_t)}$. $\mathcal{L}(\gamma_t, \dot{\gamma}_t, t) \coloneqq \frac{1}{2} \|\dot{\gamma}_t\|^2 \,,$ c becomes the squared Euclidean distance \overline{c} becomes the squared geodesic distance