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The Kantorovich dual for optimal transport
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Given measures 𝛼, 𝛽 and a cost 𝑐, the Kantorovich dual formulation is

Many methods solve the dual:
• Sinkhorn for discrete measures (with entropy)
• Euclidean Wasserstein-2 methods (Brenier’s theorem)

Chapter 5 of Optimal transport: old and new, Villani.
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Meta Optimal Transport. Amos et al., 2022
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Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ⇡100 times
computationally cheaper and produces a nearly identical coupling.
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Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures ↵ and � into latents z that are decoded with an MLP into the parameters ' of an ICNN
dual potential  '. The derivative of the ICNN provides the transport map T̂ .

Table 1: Discrete OT runtime (in seconds) to reach
a marginal error of 10�3 and Meta OT’s runtime.

MNIST Spherical

Sinkhorn 3.3 · 10�3 ±1.0 · 10�3 1.5 ±0.64
Meta OT + Sinkhorn 2.2 · 10�3 ±3.8 · 10�4 0.48 ±.24

Meta OT (Initial prediction) 4.6 · 10�5 ±2.8 · 10�6 4.4 · 10�5 ±3.2 · 10�6

Table 2: Color transfer runtimes and values.

Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10�3 ±2.7 · 10�4 0.90 ±6.08 · 10�2

+ W2GN 1k 0.93 ±2.27 · 10�2 1.0 ±2.57 · 10�3

2k 1.84 ±3.78 · 10�2 1.0 ±5.30 · 10�3

W2GN 1k 0.90 ±1.62 · 10�2 0.96 ±2.62 · 10�2

2k 1.81 ±3.05 · 10�2 0.99 ±1.14 · 10�2

We report the mean and (standard deviation) across 10 test instances.

Amortization objective. We build on the W2GN formulation [Korotin et al., 2019] and seek pa-
rameters '? optimizing the dual ICNN potentials  ' and  ' with L(';↵,�) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with '̂✓(↵,�) param-
eterized by ✓, resulting in a computationally efficient approximation to the optimum '̂✓ ⇡ '

?.
Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 [He et al., 2016] archi-
tecture for coupling image-based measures. We again emphasize that ↵,� used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
✓

E
(↵,�)⇠D

L('̂✓(↵,�);↵,�). (17)

As in the discrete setting, it does not require ground-truth solutions '? and we learn it with Adam.

4 Experiments

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
[Bradbury et al., 2018] as an extension to the the Optimal Transport Tools (OTT) package [Cuturi
et al., 2022]. All experiments take roughly ⇡2 hours to run on our single Quadro GP100 GPU.
App. C covers further experimental and implementation details. The source code to reproduce all of
our experiments is available at http://github.com/facebookresearch/meta-ot.
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On amortizing convex conjugates for optimal transport. Amos, 2022
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Both optimization problems may be hard
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Can machine learning help solve them? Yes!

Repeatedly solved for new measures and costs
Usually solved from scratch every time

Easy for small discrete measures (𝒳 finite)
Otherwise a continuous optimization problem
Repeatedly solved to evaluate the dual objective

!𝜓 𝛼, 𝛽, 𝑐 ∈ argsup
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𝒄-transformKantorovich dual

𝜓! 𝑦 ≝ inf
"
𝜓 𝑥 + 𝑐(𝑥, 𝑦)

Key idea of this talk: rapidly predict the solutions to these optimization problems
Leverages shared structure in the solution mapping



Amortized optimization
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Setup: Repeatedly solving continuous optimization problems of the form
𝑥 is a context or parameterization of the optimization problem

Amortized optimization
Parameterize a model 1𝑦#(𝑥)
Optimize or learn to approximate the solution 1𝑦# 𝑥 ≈ 𝑦⋆(𝑥)

Amortization is widely deployed
Amortized variational inference (VAEs)
Meta-learning (hypernetworks, MAML)
Reinforcement learning (policy learning for actor-critic methods, SAC)

Successes of amortization are unconstrained continuous optimization problems
Arises frequently in OT (Sinkhorn iterates, convex conjugate)
Makkuva et al. and Korotin et al. (W2GN) already using amortization

𝑦⋆ 𝑥 ∈ argmin
%

𝑓(𝑦; 𝑥)
Tutorial on amortized optimization for learning to optimize over continuous domains. Amos, Foundations and Trends in Machine Learning (to appear)

Vertical slices are optimization problems
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Amortizing the Kantorovich dual (Meta Optimal Transport)

Amortizing the 𝒄-transform (the convex conjugate)

This talk: amortized optimization for OT
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𝑦⋆ 𝑥 ∈ argmin
%

𝑓(𝑦; 𝑥)

Vertical slices are optimization problems
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Sinkhorn for entropic discrete OT
Primal formulation

Dual formulation

Mapping from the dual solution to the primal
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Under review as a conference paper at ICLR 2023

measures. The paper is organized as follows: sect. 2 recalls the main concepts needed for the rest
of the paper, in particular the formulations of the entropy regularized and unregularized optimal
transport problems and the basic notions of amortized optimization; sect. 3 presents the Meta OT
models and algorithms; and sect. 4 empirically demonstrates the effectiveness of Meta OT.

Settings that are not Meta OT. Meta OT is not useful in OT settings that do not involve repeatedly
solving OT problems over a fixed distribution, including 1) standard generative modeling settings,
such as Arjovsky et al. (2017) that estimate the OT distance between the data and model distri-
butions, and 2) the out-of-sample setting of Seguy et al. (2018); Perrot et al. (2016) that couple
measures and then extrapolate the map to larger measures containing the original measures.

2 PRELIMINARIES AND BACKGROUND

2.1 DUAL OPTIMAL TRANSPORT SOLVERS

We review foundations of optimal transportation, following the notation of Peyré et al. (2019) in
most places. The discrete setting often favors the entropic regularized version since it can be com-
puted efficiently and in a parallelized way using the Sinkhorn algorithm. On the other hand, the
continuous setting is often solved from samples using convex potentials. While the primal Kan-
torovich formulation in eq. (1) provides an intuitive problem description, optimal transport problems
are rarely solved directly in this form due to the high-dimensionality of the couplings ⇡ and the diffi-
culty of satisfying the coupling constraints U(↵,�). Instead, most computational OT solvers use the
dual of eq. (1), which we build our Meta OT solvers on top of in discrete and continuous settings.

2.1.1 ENTROPIC OT BETWEEN DISCRETE MEASURES WITH THE SINKHORN ALGORITHM

Algorithm 1 Sinkhorn(↵,�, c, ✏, f0 = 0)
for iteration i = 1 to N do

gi  ✏ log b� ✏ log
�
K> exp{fi�1/✏}

�

fi  ✏ log a� ✏ log (K exp{gi/✏})
end for

Compute PN from fN , gN using eq. (6)
return PN ⇡ P ?

Let ↵ :=
Pm

i=1 ai�xi and � :=
Pn

i=1 bi�yi be
discrete measures, where �z is a Dirac at point
z and a 2 �m�1 and b 2 �n�1 are in the
probability simplex defined by

�k�1 := {x 2 Rk : x � 0 and
X

i

xi = 1}. (2)

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program

P
?(↵,�, c) 2 argmin

P2U(a,b)
hC,P i U(a, b) := {P 2 Rn⇥m

+ : P1m = a, P
>1n = b} (3)

where P is a coupling matrix, P ?(↵,�) is the optimal coupling, and the cost can be discretized as a
matrix C 2 Rm⇥n with entries Ci,j := c(xi, yj), and hC,P i :=

P
i,j Ci,jPi,j ,

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to
smooth the objective as in Cominetti and Martín (1994); Cuturi (2013), resulting in:

P
?(↵,�, c, ✏) 2 argmin

P2U(a,b)
hC,P i � ✏H(P ) (4)

where H(P ) := �
P

i,j Pi,j(log(Pi,j)� 1) is the discrete entropy of a coupling matrix P .

Entropic OT dual. As presented in Peyré et al. (2019, Prop. 4.4), the dual of eq. (4) is

f
?
, g

? 2 argmax
f2Rn,g2Rm

hf, ai+ hg, bi � ✏ hexp{f/✏},K exp{g/✏}i , Ki,j := exp{�Ci,j/✏}, (5)

where K 2 Rm⇥n is the Gibbs kernel and the dual variables or potentials f 2 Rn and g 2 Rm are
associated, respectively, with the marginal constraints P1m = a and P

>1n = b. The optimal duals
depend on the problem, e.g. f?(↵,�, c, ✏), but we omit this dependence for notational simplicity.

Recovering the primal solution from the duals. Given optimal duals f?, g? that solve eq. (5) the
optimal coupling P

? to the primal problem in eq. (4) can be obtained by

P
?
i,j(↵,�, c, ✏) := exp{f?

i /✏}Ki,j exp{g?j /✏} (K is defined in eq. (5)) (6)

2

Under review as a conference paper at ICLR 2023

measures. The paper is organized as follows: sect. 2 recalls the main concepts needed for the rest
of the paper, in particular the formulations of the entropy regularized and unregularized optimal
transport problems and the basic notions of amortized optimization; sect. 3 presents the Meta OT
models and algorithms; and sect. 4 empirically demonstrates the effectiveness of Meta OT.

Settings that are not Meta OT. Meta OT is not useful in OT settings that do not involve repeatedly
solving OT problems over a fixed distribution, including 1) standard generative modeling settings,
such as Arjovsky et al. (2017) that estimate the OT distance between the data and model distri-
butions, and 2) the out-of-sample setting of Seguy et al. (2018); Perrot et al. (2016) that couple
measures and then extrapolate the map to larger measures containing the original measures.

2 PRELIMINARIES AND BACKGROUND

2.1 DUAL OPTIMAL TRANSPORT SOLVERS

We review foundations of optimal transportation, following the notation of Peyré et al. (2019) in
most places. The discrete setting often favors the entropic regularized version since it can be com-
puted efficiently and in a parallelized way using the Sinkhorn algorithm. On the other hand, the
continuous setting is often solved from samples using convex potentials. While the primal Kan-
torovich formulation in eq. (1) provides an intuitive problem description, optimal transport problems
are rarely solved directly in this form due to the high-dimensionality of the couplings ⇡ and the diffi-
culty of satisfying the coupling constraints U(↵,�). Instead, most computational OT solvers use the
dual of eq. (1), which we build our Meta OT solvers on top of in discrete and continuous settings.

2.1.1 ENTROPIC OT BETWEEN DISCRETE MEASURES WITH THE SINKHORN ALGORITHM

Algorithm 1 Sinkhorn(↵,�, c, ✏, f0 = 0)
for iteration i = 1 to N do

gi  ✏ log b� ✏ log
�
K> exp{fi�1/✏}

�

fi  ✏ log a� ✏ log (K exp{gi/✏})
end for

Compute PN from fN , gN using eq. (6)
return PN ⇡ P ?

Let ↵ :=
Pm

i=1 ai�xi and � :=
Pn

i=1 bi�yi be
discrete measures, where �z is a Dirac at point
z and a 2 �m�1 and b 2 �n�1 are in the
probability simplex defined by

�k�1 := {x 2 Rk : x � 0 and
X

i

xi = 1}. (2)

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program

P
?(↵,�, c) 2 argmin

P2U(a,b)
hC,P i U(a, b) := {P 2 Rn⇥m

+ : P1m = a, P
>1n = b} (3)

where P is a coupling matrix, P ?(↵,�) is the optimal coupling, and the cost can be discretized as a
matrix C 2 Rm⇥n with entries Ci,j := c(xi, yj), and hC,P i :=

P
i,j Ci,jPi,j ,

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to
smooth the objective as in Cominetti and Martín (1994); Cuturi (2013), resulting in:

P
?(↵,�, c, ✏) 2 argmin

P2U(a,b)
hC,P i � ✏H(P ) (4)

where H(P ) := �
P

i,j Pi,j(log(Pi,j)� 1) is the discrete entropy of a coupling matrix P .

Entropic OT dual. As presented in Peyré et al. (2019, Prop. 4.4), the dual of eq. (4) is

f
?
, g

? 2 argmax
f2Rn,g2Rm

hf, ai+ hg, bi � ✏ hexp{f/✏},K exp{g/✏}i , Ki,j := exp{�Ci,j/✏}, (5)

where K 2 Rm⇥n is the Gibbs kernel and the dual variables or potentials f 2 Rn and g 2 Rm are
associated, respectively, with the marginal constraints P1m = a and P

>1n = b. The optimal duals
depend on the problem, e.g. f?(↵,�, c, ✏), but we omit this dependence for notational simplicity.

Recovering the primal solution from the duals. Given optimal duals f?, g? that solve eq. (5) the
optimal coupling P

? to the primal problem in eq. (4) can be obtained by

P
?
i,j(↵,�, c, ✏) := exp{f?

i /✏}Ki,j exp{g?j /✏} (K is defined in eq. (5)) (6)

2

Under review as a conference paper at ICLR 2023

measures. The paper is organized as follows: sect. 2 recalls the main concepts needed for the rest
of the paper, in particular the formulations of the entropy regularized and unregularized optimal
transport problems and the basic notions of amortized optimization; sect. 3 presents the Meta OT
models and algorithms; and sect. 4 empirically demonstrates the effectiveness of Meta OT.

Settings that are not Meta OT. Meta OT is not useful in OT settings that do not involve repeatedly
solving OT problems over a fixed distribution, including 1) standard generative modeling settings,
such as Arjovsky et al. (2017) that estimate the OT distance between the data and model distri-
butions, and 2) the out-of-sample setting of Seguy et al. (2018); Perrot et al. (2016) that couple
measures and then extrapolate the map to larger measures containing the original measures.

2 PRELIMINARIES AND BACKGROUND

2.1 DUAL OPTIMAL TRANSPORT SOLVERS

We review foundations of optimal transportation, following the notation of Peyré et al. (2019) in
most places. The discrete setting often favors the entropic regularized version since it can be com-
puted efficiently and in a parallelized way using the Sinkhorn algorithm. On the other hand, the
continuous setting is often solved from samples using convex potentials. While the primal Kan-
torovich formulation in eq. (1) provides an intuitive problem description, optimal transport problems
are rarely solved directly in this form due to the high-dimensionality of the couplings ⇡ and the diffi-
culty of satisfying the coupling constraints U(↵,�). Instead, most computational OT solvers use the
dual of eq. (1), which we build our Meta OT solvers on top of in discrete and continuous settings.

2.1.1 ENTROPIC OT BETWEEN DISCRETE MEASURES WITH THE SINKHORN ALGORITHM

Algorithm 1 Sinkhorn(↵,�, c, ✏, f0 = 0)
for iteration i = 1 to N do

gi  ✏ log b� ✏ log
�
K> exp{fi�1/✏}

�

fi  ✏ log a� ✏ log (K exp{gi/✏})
end for

Compute PN from fN , gN using eq. (6)
return PN ⇡ P ?

Let ↵ :=
Pm

i=1 ai�xi and � :=
Pn

i=1 bi�yi be
discrete measures, where �z is a Dirac at point
z and a 2 �m�1 and b 2 �n�1 are in the
probability simplex defined by

�k�1 := {x 2 Rk : x � 0 and
X

i

xi = 1}. (2)

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program

P
?(↵,�, c) 2 argmin

P2U(a,b)
hC,P i U(a, b) := {P 2 Rn⇥m

+ : P1m = a, P
>1n = b} (3)

where P is a coupling matrix, P ?(↵,�) is the optimal coupling, and the cost can be discretized as a
matrix C 2 Rm⇥n with entries Ci,j := c(xi, yj), and hC,P i :=

P
i,j Ci,jPi,j ,

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to
smooth the objective as in Cominetti and Martín (1994); Cuturi (2013), resulting in:

P
?(↵,�, c, ✏) 2 argmin

P2U(a,b)
hC,P i � ✏H(P ) (4)

where H(P ) := �
P

i,j Pi,j(log(Pi,j)� 1) is the discrete entropy of a coupling matrix P .

Entropic OT dual. As presented in Peyré et al. (2019, Prop. 4.4), the dual of eq. (4) is

f
?
, g

? 2 argmax
f2Rn,g2Rm

hf, ai+ hg, bi � ✏ hexp{f/✏},K exp{g/✏}i , Ki,j := exp{�Ci,j/✏}, (5)

where K 2 Rm⇥n is the Gibbs kernel and the dual variables or potentials f 2 Rn and g 2 Rm are
associated, respectively, with the marginal constraints P1m = a and P

>1n = b. The optimal duals
depend on the problem, e.g. f?(↵,�, c, ✏), but we omit this dependence for notational simplicity.

Recovering the primal solution from the duals. Given optimal duals f?, g? that solve eq. (5) the
optimal coupling P

? to the primal problem in eq. (4) can be obtained by

P
?
i,j(↵,�, c, ✏) := exp{f?

i /✏}Ki,j exp{g?j /✏} (K is defined in eq. (5)) (6)

2

Under review as a conference paper at ICLR 2023

measures. The paper is organized as follows: sect. 2 recalls the main concepts needed for the rest
of the paper, in particular the formulations of the entropy regularized and unregularized optimal
transport problems and the basic notions of amortized optimization; sect. 3 presents the Meta OT
models and algorithms; and sect. 4 empirically demonstrates the effectiveness of Meta OT.

Settings that are not Meta OT. Meta OT is not useful in OT settings that do not involve repeatedly
solving OT problems over a fixed distribution, including 1) standard generative modeling settings,
such as Arjovsky et al. (2017) that estimate the OT distance between the data and model distri-
butions, and 2) the out-of-sample setting of Seguy et al. (2018); Perrot et al. (2016) that couple
measures and then extrapolate the map to larger measures containing the original measures.

2 PRELIMINARIES AND BACKGROUND

2.1 DUAL OPTIMAL TRANSPORT SOLVERS

We review foundations of optimal transportation, following the notation of Peyré et al. (2019) in
most places. The discrete setting often favors the entropic regularized version since it can be com-
puted efficiently and in a parallelized way using the Sinkhorn algorithm. On the other hand, the
continuous setting is often solved from samples using convex potentials. While the primal Kan-
torovich formulation in eq. (1) provides an intuitive problem description, optimal transport problems
are rarely solved directly in this form due to the high-dimensionality of the couplings ⇡ and the diffi-
culty of satisfying the coupling constraints U(↵,�). Instead, most computational OT solvers use the
dual of eq. (1), which we build our Meta OT solvers on top of in discrete and continuous settings.

2.1.1 ENTROPIC OT BETWEEN DISCRETE MEASURES WITH THE SINKHORN ALGORITHM

Algorithm 1 Sinkhorn(↵,�, c, ✏, f0 = 0)
for iteration i = 1 to N do

gi  ✏ log b� ✏ log
�
K> exp{fi�1/✏}

�

fi  ✏ log a� ✏ log (K exp{gi/✏})
end for

Compute PN from fN , gN using eq. (6)
return PN ⇡ P ?

Let ↵ :=
Pm

i=1 ai�xi and � :=
Pn

i=1 bi�yi be
discrete measures, where �z is a Dirac at point
z and a 2 �m�1 and b 2 �n�1 are in the
probability simplex defined by

�k�1 := {x 2 Rk : x � 0 and
X

i

xi = 1}. (2)

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program

P
?(↵,�, c) 2 argmin

P2U(a,b)
hC,P i U(a, b) := {P 2 Rn⇥m

+ : P1m = a, P
>1n = b} (3)

where P is a coupling matrix, P ?(↵,�) is the optimal coupling, and the cost can be discretized as a
matrix C 2 Rm⇥n with entries Ci,j := c(xi, yj), and hC,P i :=

P
i,j Ci,jPi,j ,

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to
smooth the objective as in Cominetti and Martín (1994); Cuturi (2013), resulting in:

P
?(↵,�, c, ✏) 2 argmin

P2U(a,b)
hC,P i � ✏H(P ) (4)

where H(P ) := �
P

i,j Pi,j(log(Pi,j)� 1) is the discrete entropy of a coupling matrix P .

Entropic OT dual. As presented in Peyré et al. (2019, Prop. 4.4), the dual of eq. (4) is

f
?
, g

? 2 argmax
f2Rn,g2Rm

hf, ai+ hg, bi � ✏ hexp{f/✏},K exp{g/✏}i , Ki,j := exp{�Ci,j/✏}, (5)

where K 2 Rm⇥n is the Gibbs kernel and the dual variables or potentials f 2 Rn and g 2 Rm are
associated, respectively, with the marginal constraints P1m = a and P

>1n = b. The optimal duals
depend on the problem, e.g. f?(↵,�, c, ✏), but we omit this dependence for notational simplicity.

Recovering the primal solution from the duals. Given optimal duals f?, g? that solve eq. (5) the
optimal coupling P

? to the primal problem in eq. (4) can be obtained by

P
?
i,j(↵,�, c, ✏) := exp{f?

i /✏}Ki,j exp{g?j /✏} (K is defined in eq. (5)) (6)

2

Under review as a conference paper at ICLR 2023

measures. The paper is organized as follows: sect. 2 recalls the main concepts needed for the rest
of the paper, in particular the formulations of the entropy regularized and unregularized optimal
transport problems and the basic notions of amortized optimization; sect. 3 presents the Meta OT
models and algorithms; and sect. 4 empirically demonstrates the effectiveness of Meta OT.

Settings that are not Meta OT. Meta OT is not useful in OT settings that do not involve repeatedly
solving OT problems over a fixed distribution, including 1) standard generative modeling settings,
such as Arjovsky et al. (2017) that estimate the OT distance between the data and model distri-
butions, and 2) the out-of-sample setting of Seguy et al. (2018); Perrot et al. (2016) that couple
measures and then extrapolate the map to larger measures containing the original measures.

2 PRELIMINARIES AND BACKGROUND

2.1 DUAL OPTIMAL TRANSPORT SOLVERS

We review foundations of optimal transportation, following the notation of Peyré et al. (2019) in
most places. The discrete setting often favors the entropic regularized version since it can be com-
puted efficiently and in a parallelized way using the Sinkhorn algorithm. On the other hand, the
continuous setting is often solved from samples using convex potentials. While the primal Kan-
torovich formulation in eq. (1) provides an intuitive problem description, optimal transport problems
are rarely solved directly in this form due to the high-dimensionality of the couplings ⇡ and the diffi-
culty of satisfying the coupling constraints U(↵,�). Instead, most computational OT solvers use the
dual of eq. (1), which we build our Meta OT solvers on top of in discrete and continuous settings.

2.1.1 ENTROPIC OT BETWEEN DISCRETE MEASURES WITH THE SINKHORN ALGORITHM

Algorithm 1 Sinkhorn(↵,�, c, ✏, f0 = 0)
for iteration i = 1 to N do

gi  ✏ log b� ✏ log
�
K> exp{fi�1/✏}

�

fi  ✏ log a� ✏ log (K exp{gi/✏})
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Compute PN from fN , gN using eq. (6)
return PN ⇡ P ?

Let ↵ :=
Pm

i=1 ai�xi and � :=
Pn

i=1 bi�yi be
discrete measures, where �z is a Dirac at point
z and a 2 �m�1 and b 2 �n�1 are in the
probability simplex defined by

�k�1 := {x 2 Rk : x � 0 and
X

i

xi = 1}. (2)

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program

P
?(↵,�, c) 2 argmin

P2U(a,b)
hC,P i U(a, b) := {P 2 Rn⇥m

+ : P1m = a, P
>1n = b} (3)

where P is a coupling matrix, P ?(↵,�) is the optimal coupling, and the cost can be discretized as a
matrix C 2 Rm⇥n with entries Ci,j := c(xi, yj), and hC,P i :=

P
i,j Ci,jPi,j ,

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to
smooth the objective as in Cominetti and Martín (1994); Cuturi (2013), resulting in:

P
?(↵,�, c, ✏) 2 argmin

P2U(a,b)
hC,P i � ✏H(P ) (4)

where H(P ) := �
P

i,j Pi,j(log(Pi,j)� 1) is the discrete entropy of a coupling matrix P .

Entropic OT dual. As presented in Peyré et al. (2019, Prop. 4.4), the dual of eq. (4) is

f
?
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f2Rn,g2Rm
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where K 2 Rm⇥n is the Gibbs kernel and the dual variables or potentials f 2 Rn and g 2 Rm are
associated, respectively, with the marginal constraints P1m = a and P

>1n = b. The optimal duals
depend on the problem, e.g. f?(↵,�, c, ✏), but we omit this dependence for notational simplicity.

Recovering the primal solution from the duals. Given optimal duals f?, g? that solve eq. (5) the
optimal coupling P
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Figure 1: Meta OT uses objective-based amortization for optimal transport. In the general formula-
tion, the parameters ✓ capture shared structure in the optimal couplings ⇡? between multiple input
measures and costs over some distribution D. In practice, we learn this shared structure over the
dual potentials which map back to the coupling: f? in discrete settings and  ? in continuous ones.

2.2 Amortized optimization and learning to optimize

Our paper is an application of amortized optimization methods that predict the solutions of opti-
mization problems, as surveyed in, e.g., Chen et al. [2021], Amos [2022]. We use the basic setup
from Amos [2022], which considers unconstrained continuous optimization problems of the form

z
?(�) 2 argmin

z
J(z;�), (13)

where J is the objective, z 2 Z is the domain, and � 2 � is some context or parameterization. In
other words, the context conditions the objective but is not optimized over. Given a distribution over
contexts P(�), we learn a model ẑ✓ parameterized by ✓ to approximate eq. (13), i.e. ẑ✓(�) ⇡ z

?(�).
J will be differentiable for us, so we optimize the parameters using objective-based learning with

min
✓

E
�⇠P(�)

J(ẑ✓(�);�), (14)

which does not require ground-truth solutions z? and can be optimized with a gradient-based solver.

3 Meta Optimal Transport

Figure 1 illustrates our key contribution of connecting objective-based amortization in eq. (14) to
optimal transport. We consider solving multiple OT problems and learning shared structure and
correlations between them. We denote a joint meta-distribution over the input measures and costs
with D(↵,�, c), which we call meta to distinguish it from the measures ↵,�.

In general, we could introduce a model that directly predicts the primal solution to eq. (1), i.e.
⇡✓(↵,�, c) ⇡ ⇡

?(↵,�, c) for (↵,�, c) ⇠ D. This is difficult for the same reason why most compu-
tational methods do not operate directly in the primal space: the optimal coupling is often a high-
dimensional joint distribution with non-trivial marginal constraints. We instead turn to predicting
the dual variables used by today’s solvers.

3.1 Meta OT between discrete measures

We build on standard methods for entropic OT reviewed in sect. 2.1.1 between discrete measures
↵ :=

Pm
i=1 ai�xi and � :=

Pn
i=1 bi�xi with a 2 �m�1 and b 2 �n�1 coupled using a cost c. In the

Meta OT setting, the measures and cost are the contexts for amortization and sampled from a meta-
distribution, i.e. (↵,�, c) ⇠ D(↵,�, c). For example, sects. 4.1 and 4.2 considers meta-distributions
over the weights of the atoms, i.e. (a, b) ⇠ D, where D is a distribution over �m�1 ⇥�n�1.

Amortization objective. We will seek to predict the optimal potential. At optimality, the pair of
potentials are related to each other via eq. (8), i.e. g(f ;↵,�, c) := ✏ log b � ✏ log

�
K

> exp{f/✏}
�

where K 2 Rm⇥n is the Gibbs kernel from eq. (5). Hence, it is sufficient to predict one of the
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measures. The paper is organized as follows: sect. 2 recalls the main concepts needed for the rest
of the paper, in particular the formulations of the entropy regularized and unregularized optimal
transport problems and the basic notions of amortized optimization; sect. 3 presents the Meta OT
models and algorithms; and sect. 4 empirically demonstrates the effectiveness of Meta OT.

Settings that are not Meta OT. Meta OT is not useful in OT settings that do not involve repeatedly
solving OT problems over a fixed distribution, including 1) standard generative modeling settings,
such as Arjovsky et al. (2017) that estimate the OT distance between the data and model distri-
butions, and 2) the out-of-sample setting of Seguy et al. (2018); Perrot et al. (2016) that couple
measures and then extrapolate the map to larger measures containing the original measures.

2 PRELIMINARIES AND BACKGROUND

2.1 DUAL OPTIMAL TRANSPORT SOLVERS

We review foundations of optimal transportation, following the notation of Peyré et al. (2019) in
most places. The discrete setting often favors the entropic regularized version since it can be com-
puted efficiently and in a parallelized way using the Sinkhorn algorithm. On the other hand, the
continuous setting is often solved from samples using convex potentials. While the primal Kan-
torovich formulation in eq. (1) provides an intuitive problem description, optimal transport problems
are rarely solved directly in this form due to the high-dimensionality of the couplings ⇡ and the diffi-
culty of satisfying the coupling constraints U(↵,�). Instead, most computational OT solvers use the
dual of eq. (1), which we build our Meta OT solvers on top of in discrete and continuous settings.

2.1.1 ENTROPIC OT BETWEEN DISCRETE MEASURES WITH THE SINKHORN ALGORITHM

Algorithm 1 Sinkhorn(↵,�, c, ✏, f0 = 0)
for iteration i = 1 to N do

gi  ✏ log b� ✏ log
�
K> exp{fi�1/✏}

�

fi  ✏ log a� ✏ log (K exp{gi/✏})
end for

Compute PN from fN , gN using eq. (6)
return PN ⇡ P ?

Let ↵ :=
Pm

i=1 ai�xi and � :=
Pn

i=1 bi�yi be
discrete measures, where �z is a Dirac at point
z and a 2 �m�1 and b 2 �n�1 are in the
probability simplex defined by

�k�1 := {x 2 Rk : x � 0 and
X

i

xi = 1}. (2)

Discrete OT. In the discrete setting, eq. (1) simplifies to the linear program

P
?(↵,�, c) 2 argmin

P2U(a,b)
hC,P i U(a, b) := {P 2 Rn⇥m

+ : P1m = a, P
>1n = b} (3)

where P is a coupling matrix, P ?(↵,�) is the optimal coupling, and the cost can be discretized as a
matrix C 2 Rm⇥n with entries Ci,j := c(xi, yj), and hC,P i :=

P
i,j Ci,jPi,j ,

Entropic OT. The linear program above can be regularized adding the entropy of the coupling to
smooth the objective as in Cominetti and Martín (1994); Cuturi (2013), resulting in:

P
?(↵,�, c, ✏) 2 argmin

P2U(a,b)
hC,P i � ✏H(P ) (4)

where H(P ) := �
P

i,j Pi,j(log(Pi,j)� 1) is the discrete entropy of a coupling matrix P .

Entropic OT dual. As presented in Peyré et al. (2019, Prop. 4.4), the dual of eq. (4) is

f
?
, g

? 2 argmax
f2Rn,g2Rm

hf, ai+ hg, bi � ✏ hexp{f/✏},K exp{g/✏}i , Ki,j := exp{�Ci,j/✏}, (5)

where K 2 Rm⇥n is the Gibbs kernel and the dual variables or potentials f 2 Rn and g 2 Rm are
associated, respectively, with the marginal constraints P1m = a and P

>1n = b. The optimal duals
depend on the problem, e.g. f?(↵,�, c, ✏), but we omit this dependence for notational simplicity.

Recovering the primal solution from the duals. Given optimal duals f?, g? that solve eq. (5) the
optimal coupling P

? to the primal problem in eq. (4) can be obtained by

P
?
i,j(↵,�, c, ✏) := exp{f?

i /✏}Ki,j exp{g?j /✏} (K is defined in eq. (5)) (6)
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Algorithm 3 Training Meta OT
Initialize amortization model with ✓0
for iteration i do

Sample (↵,�, c) ⇠ D
Predict duals f̂✓ or '̂✓ on the sample
Estimate the loss in eq. (17) or eq. (18)
Update ✓i+1 with a gradient step

end for

Algorithm 4 Fine-tuning with Sinkhorn
Predict duals f̂✓(↵,�, c)
return Sinkhorn(↵,�, c, ✏, f̂✓)

Algorithm 5 Fine-tuning with W2GN
Predict dual ICNN parameters '̂✓(↵,�, c)
return W2GN(↵,�, c, T, '̂✓)

Amortization objective. We will seek to predict the optimal potential. At optimality, the pair of
potentials are related to each other via eq. (8), i.e. g(f ;↵,�, c) := ✏ log b � ✏ log

�
K

> exp{f/✏}
�

where K 2 Rm⇥n is the Gibbs kernel from eq. (5). Hence, it is sufficient to predict one of the
potentials, e.g. f , and recover the other. We thus re-formulate eq. (5) to just optimize over f with

f
?(↵,�, c, ✏) 2 argmin

f2Rn
J(f ;↵,�, c), (16)

where �J(f ;↵,�, c) := hf, ai+hg, bi�✏ hexp{f/✏},K exp{g/✏}i is the (negated) dual objective.
Even though most solvers optimize over f and g jointly as in eq. (16), amortizing over these would
likely need: 1) to have a higher capacity than a model just predicting f , and 2) to learn how f and g

are connected through eq. (8) while in eq. (16) we explicitly provide this knowledge.

Amortization model. We predict the solution to eq. (16) with f̂✓(↵,�, c) parameterized by ✓,
resulting in a computationally efficient approximation f̂✓ ⇡ f

?. Here we use the notation f̂✓(↵,�, c)
to mean that the model f̂✓ depends on representations of the input measures and cost. In our settings,
we define f̂✓ as a fully-connected MLP mapping from the atoms of the measures to the duals.

Amortization loss. Applying objective-based amortization from eq. (14) to the dual in eq. (16)
completes our learning setup. Our model should best-optimize the expectation of the dual objective

min
✓

E
(↵,�,c)⇠D

J(f̂✓(↵,�, c);↵,�, c), (17)

which is appealing as it does not require ground-truth solutions f
?. Algorithm 3 shows a basic

training loop for eq. (17) using a gradient-based optimizer such as Adam (Kingma and Ba, 2014).

Sinkhorn fine-tuning. The dual prediction made by f̂✓ with an associated ĝ can easily be input as
the initialization to a standard Sinkhorn solver as shown in algorithm 4. This allows us to deploy the
predicted potential with Sinkhorn to obtain the optimal potentials with only a few extra iterations.

On accelerated solvers. Here we have only considered fine-tuning the Meta OT prediction with
a log-Sinkhorn solver. Meta OT can also be combined with accelerated variants of entropic OT
solvers such as Thibault et al. (2017); Altschuler et al. (2017); Alaya et al. (2019); Lin et al. (2019)
that would otherwise solve every problem from scratch.

3.2 META OT BETWEEN CONTINUOUS MEASURES (WASSERSTEIN-2)

We take an analogous approach to predicting the Wasserstein-2 map between continuous measures
for Wasserstein-2 as reviewed in sect. 2.1.2. Here the measures ↵,� are supported in continuous
space X = Y = Rd and we focus on computing Wasserstein-2 couplings from instances sampled
from a meta-distribution (↵,�) ⇠ D(↵,�). The cost c is not included in D as it remains fixed to the
squared Euclidean cost everywhere here.

One challenge here is that the optimal dual potential  ?( · ;↵,�) in eq. (10) is a convex function and
not simply a finite-dimensional real vector. The dual potentials in this setting are approximated by,
e.g., an ICNN. We thus propose a Meta ICNN that predicts the parameters ' of an ICNN  ' that
approximates the optimal dual potentials, which can be seen as a hypernetwork (Stanley et al., 2009;
Ha et al., 2016). The dual prediction made by '̂✓ can easily be input as the initial value to a standard
W2GN solver as shown in algorithm 5. App. B discusses other modeling choices we considered:
we tried models based on MAML (Finn et al., 2017) and neural processes (Garnelo et al., 2018b;a).
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Sinkhorn (converged, ground-truth)
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↵2

Meta OT (initial prediction)

↵0 ↵1
↵2

Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ⇡100 times
computationally cheaper and produces a nearly identical coupling.
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Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures ↵ and � into latents z that are decoded with an MLP into the parameters ' of an ICNN
dual potential  '. The derivative of the ICNN provides the transport map T̂ .

Table 1: Discrete OT runtime (in seconds) to reach
a marginal error of 10�3 and Meta OT’s runtime.

MNIST Spherical

Sinkhorn 3.3 · 10�3 ±1.0 · 10�3 1.5 ±0.64
Meta OT + Sinkhorn 2.2 · 10�3 ±3.8 · 10�4 0.48 ±.24

Meta OT (Initial prediction) 4.6 · 10�5 ±2.8 · 10�6 4.4 · 10�5 ±3.2 · 10�6

Table 2: Color transfer runtimes and values.

Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10�3 ±2.7 · 10�4 0.90 ±6.08 · 10�2

+ W2GN 1k 0.93 ±2.27 · 10�2 1.0 ±2.57 · 10�3

2k 1.84 ±3.78 · 10�2 1.0 ±5.30 · 10�3

W2GN 1k 0.90 ±1.62 · 10�2 0.96 ±2.62 · 10�2

2k 1.81 ±3.05 · 10�2 0.99 ±1.14 · 10�2

We report the mean and (standard deviation) across 10 test instances.

Amortization objective. We build on the W2GN formulation [Korotin et al., 2019] and seek pa-
rameters '? optimizing the dual ICNN potentials  ' and  ' with L(';↵,�) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with '̂✓(↵,�) param-
eterized by ✓, resulting in a computationally efficient approximation to the optimum '̂✓ ⇡ '

?.
Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 [He et al., 2016] archi-
tecture for coupling image-based measures. We again emphasize that ↵,� used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
✓

E
(↵,�)⇠D

L('̂✓(↵,�);↵,�). (17)

As in the discrete setting, it does not require ground-truth solutions '? and we learn it with Adam.

4 Experiments

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
[Bradbury et al., 2018] as an extension to the the Optimal Transport Tools (OTT) package [Cuturi
et al., 2022]. All experiments take roughly ⇡2 hours to run on our single Quadro GP100 GPU.
App. C covers further experimental and implementation details. The source code to reproduce all of
our experiments is available at http://github.com/facebookresearch/meta-ot.
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Sinkhorn Meta OT + Sinkhorn

Figure 4: Sinkhorn convergence on test instances. Meta OT successfully predicts warm-start initial-
izations that significantly improve the convergence of Sinkhorn iterations.

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 5: Test set coupling predictions of the spherical transport problem. Meta OT’s initial pre-
diction is ⇡37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport maps T going to demand locations at the
end. The sphere is visualized with the Mercator projection.

4.1 Discrete OT between MNIST digits

Images provide a natural setting for Meta OT where the distribution over images provide the meta-
distribution D over OT problems. Given a pair of images ↵0 and ↵1, each grayscale image is
cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of
the atoms. The goal is to compute the optimal transport interpolation between the two measures
as in, e.g., Peyré et al. [2019, §7]. Formally, this means computing the optimal coupling P

? by
solving the entropic optimal transport problem between ↵0 and ↵1 and computing the interpolates
as ↵t = (t projy +(1� t) projx)#P

?, for t 2 [0, 1], where projx(x, y) := x and projy(x, y) = y.
We selected ✏ = 10�2 as app. A shows that it gives interpolations that are not too blurry or sharp.

Our Meta OT model f̂✓ (sect. 3.1) is an MLP that predicts the transport map between pairs of
MNIST digits. We train on every pair from the standard training dataset. Figure 2 shows that even
without fine-tuning, Meta OT’s predicted Wasserstein interpolations between the measures are close
to the ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence.
We then fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the
near-optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the
default initialization, and table 1 shows the runtime required to reach the default threshold.
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diction is ⇡37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport maps T going to demand locations at the
end. The sphere is visualized with the Mercator projection.

4.1 DISCRETE OT BETWEEN MNIST DIGITS

Images provide a natural setting for Meta OT where the distribution over images provide the meta-
distribution D over OT problems. Given a pair of images ↵0 and ↵1, each grayscale image is
cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of
the atoms. The goal is to compute the optimal transport interpolation between the two measures
as in, e.g., Peyré et al. (2019, §7). Formally, this means computing the optimal coupling P

? by
solving the entropic optimal transport problem between ↵0 and ↵1 and computing the interpolates
as ↵t = (t projy +(1� t) projx)#P

?, for t 2 [0, 1], where projx(x, y) := x and projy(x, y) = y.
We selected ✏ = 10�2 as app. A shows that it gives interpolations that are not too blurry or sharp.

Our Meta OT model f̂✓ (sect. 3.1) is an MLP that predicts the transport map between pairs of
MNIST digits. We train on every pair from the standard training dataset. Figure 2 shows that even
without fine-tuning, Meta OT’s predicted Wasserstein interpolations between the measures are close
to the ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence.
We then fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the
near-optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the
default initialization, and table 1 shows the runtime required to reach an error threshold of 10�2,
showing that the Meta OT initialization help solve the problems faster by an order of magnitude. We
compare our learned initialization to the standard zero initialization, as well as the Gaussian initial-
ization proposed in Thornton and Cuturi (2022), which takes a continuous Gaussian approximation
of the measures and initializes the potentials to be the known coupling between the Gaussians. This
Gaussian initialization assumes the squared Euclidean cost, which is not the case in our spherical
transport problem, but we find it is still helpful over the zero initialization.
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The Sinkhorn algorithm. Algorithm 1 summarizes the log-space version, which takes closed-form
block coordinate ascent updates on eq. (5) obtained from the first-order optimality conditions (Peyré
et al., 2019, Remark 4.21). We will use it to fine-tune predictions made by our Meta OT models.

Computing the error. Standard implementations of the Sinkhorn algorithm, such as Flamary et al.
(2021); Cuturi et al. (2022), measure the error of a candidate dual solution (f, g) by computing the
deviation from the marginal constraints, which we will also use in comparing our solution quality:

err(f, g;↵,�, c) := kP1m � ak1 + kP>1n � bk1 (compute P from eq. (6)) (7)

Mapping between the duals. The first-order optimality conditions of eq. (5) also provide an equiv-
alence between the optimal dual potentials that we will make use of:

g(f ; b, c) := ✏ log b� ✏ log
�
K

> exp{f/✏}
�
. (8)

2.1.2 DUAL WASSERSTEIN-2 OT BETWEEN CONTINUOUS (EUCLIDEAN) MEASURES

Algorithm 2 W2GN(↵,�,'0)
for iteration i = 1 to N do

Sample from (↵,�) and estimate L('i�1)
Update 'i with approximation to r'L('i�1)

end for

return TN (·) := rx 'N (·) ⇡ T ?(·)

Let ↵ and � be continuous measures in Euclidean
space X = Y = Rd (with ↵ absolutely contin-
uous with respect to the Lebesgue measure) and
the ground cost be the squared Euclidean distance
c(x, y) := kx�yk22. Then the minimum of eq. (1)
defines the square of the Wasserstein-2 distance:

W
2
2 (↵,�) := min

⇡2U(↵,�)

Z

X⇥Y
kx� yk22d⇡(x, y) = min

T

Z

X
kx� T (x)k22d↵(x), (9)

where T is a transport map pushing ↵ to �, i.e. T#↵ = � with the pushforward operator defined
by T#↵(B) := ↵(T�1(B)) for any measurable set B.

Convex dual potentials. The primal form in eq. (9) is difficult to solve, as in the discrete setting, due
to the difficulty of representing the coupling and satisfying the constraints. Makkuva et al. (2020);
Taghvaei and Jalali (2019); Korotin et al. (2019; 2021b; 2022) propose to instead solve the dual:

 
?( · ;↵,�) 2 argmin

 2convex

Z

X
 (x)d↵(x) +

Z

Y
 (y)d�(y), (10)

where  is a convex function referred to as a convex potential, and  (y) := maxx2X hx, yi� (x) is
the Legendre-Fenchel transform or convex conjugate of  (Fenchel, 1949; Rockafellar, 2015). The
potential  is often approximated with an input-convex neural network (ICNN) (Amos et al., 2017).

Recovering the primal solution from the dual. Given an optimal dual  ? for eq. (10), Brenier
(1991) remarkably shows that an optimal map T

? for eq. (9) can be obtained with differentiation:

T
?(x) = rx 

?(x). (11)

Wasserstein-2 Generative Networks (W2GNs). Korotin et al. (2019) model  ' and  ' in eq. (10)
with two separate ICNNs parameterized by '. The separate model for  ' is useful because the
conjugate operation in eq. (10) becomes computationally expensive. They optimize the loss:

L(') := E
x⇠↵

[ '(x)] + E
y⇠�

⇥
hr '(y), yi �  '(r '(y))

⇤

| {z }
Cyclic monotone correlations (dual objective)

+� E
y⇠�

kr ' � r '(y)� yk22,
| {z }

Cycle-consistency regularizer

(12)

where ' is a detached copy of the parameters and � is a hyper-parameter. The first term are the
cyclic monotone correlations (Chartrand et al., 2009; Taghvaei and Jalali, 2019), that optimize the
dual objective in eq. (10), and the second term provides cycle consistency (Zhu et al., 2017) to
estimate the conjugate  . Algorithm 2 shows how L is typically optimized using samples from the
measures, which we use to fine-tune Meta OT predictions.
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potential  is often approximated with an input-convex neural network (ICNN) (Amos et al., 2017).

Recovering the primal solution from the dual. Given an optimal dual  ? for eq. (10), Brenier
(1991) remarkably shows that an optimal map T

? for eq. (9) can be obtained with differentiation:

T
?(x) = rx 

?(x). (11)

Wasserstein-2 Generative Networks (W2GNs). Korotin et al. (2019) model  ' and  ' in eq. (10)
with two separate ICNNs parameterized by '. The separate model for  ' is useful because the
conjugate operation in eq. (10) becomes computationally expensive. They optimize the loss:

L(') := E
x⇠↵

[ '(x)] + E
y⇠�

⇥
hr '(y), yi �  '(r '(y))

⇤

| {z }
Cyclic monotone correlations (dual objective)

+� E
y⇠�

kr ' � r '(y)� yk22,
| {z }

Cycle-consistency regularizer

(12)

where ' is a detached copy of the parameters and � is a hyper-parameter. The first term are the
cyclic monotone correlations (Chartrand et al., 2009; Taghvaei and Jalali, 2019), that optimize the
dual objective in eq. (10), and the second term provides cycle consistency (Zhu et al., 2017) to
estimate the conjugate  . Algorithm 2 shows how L is typically optimized using samples from the
measures, which we use to fine-tune Meta OT predictions.
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• Difference from continuous case, dual potential is a function
• Hyper-network mapping from the measures to the optimal dual parameters

Learn the model with a meta version of the W2GN loss
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Figure 1: Meta OT uses objective-based amortization for optimal transport. In the general formula-
tion, the parameters ✓ capture shared structure in the optimal couplings ⇡? between multiple input
measures and costs over some distribution D. In practice, we learn this shared structure over the
dual potentials which map back to the coupling: f? in discrete settings and  ? in continuous ones.

2.2 Amortized optimization and learning to optimize

Our paper is an application of amortized optimization methods that predict the solutions of opti-
mization problems, as surveyed in, e.g., Chen et al. [2021], Amos [2022]. We use the basic setup
from Amos [2022], which considers unconstrained continuous optimization problems of the form

z
?(�) 2 argmin

z
J(z;�), (13)

where J is the objective, z 2 Z is the domain, and � 2 � is some context or parameterization. In
other words, the context conditions the objective but is not optimized over. Given a distribution over
contexts P(�), we learn a model ẑ✓ parameterized by ✓ to approximate eq. (13), i.e. ẑ✓(�) ⇡ z

?(�).
J will be differentiable for us, so we optimize the parameters using objective-based learning with

min
✓

E
�⇠P(�)

J(ẑ✓(�);�), (14)

which does not require ground-truth solutions z? and can be optimized with a gradient-based solver.

3 Meta Optimal Transport

Figure 1 illustrates our key contribution of connecting objective-based amortization in eq. (14) to
optimal transport. We consider solving multiple OT problems and learning shared structure and
correlations between them. We denote a joint meta-distribution over the input measures and costs
with D(↵,�, c), which we call meta to distinguish it from the measures ↵,�.

In general, we could introduce a model that directly predicts the primal solution to eq. (1), i.e.
⇡✓(↵,�, c) ⇡ ⇡

?(↵,�, c) for (↵,�, c) ⇠ D. This is difficult for the same reason why most compu-
tational methods do not operate directly in the primal space: the optimal coupling is often a high-
dimensional joint distribution with non-trivial marginal constraints. We instead turn to predicting
the dual variables used by today’s solvers.

3.1 Meta OT between discrete measures

We build on standard methods for entropic OT reviewed in sect. 2.1.1 between discrete measures
↵ :=

Pm
i=1 ai�xi and � :=

Pn
i=1 bi�xi with a 2 �m�1 and b 2 �n�1 coupled using a cost c. In the

Meta OT setting, the measures and cost are the contexts for amortization and sampled from a meta-
distribution, i.e. (↵,�, c) ⇠ D(↵,�, c). For example, sects. 4.1 and 4.2 considers meta-distributions
over the weights of the atoms, i.e. (a, b) ⇠ D, where D is a distribution over �m�1 ⇥�n�1.

Amortization objective. We will seek to predict the optimal potential. At optimality, the pair of
potentials are related to each other via eq. (8), i.e. g(f ;↵,�, c) := ✏ log b � ✏ log

�
K

> exp{f/✏}
�

where K 2 Rm⇥n is the Gibbs kernel from eq. (5). Hence, it is sufficient to predict one of the
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Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ⇡100 times
computationally cheaper and produces a nearly identical coupling.
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Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures ↵ and � into latents z that are decoded with an MLP into the parameters ' of an ICNN
dual potential  '. The derivative of the ICNN provides the transport map T̂ .

Table 1: Discrete OT runtime (in seconds) to reach
a marginal error of 10�3 and Meta OT’s runtime.

MNIST Spherical

Sinkhorn 3.3 · 10�3 ±1.0 · 10�3 1.5 ±0.64
Meta OT + Sinkhorn 2.2 · 10�3 ±3.8 · 10�4 0.48 ±.24

Meta OT (Initial prediction) 4.6 · 10�5 ±2.8 · 10�6 4.4 · 10�5 ±3.2 · 10�6

Table 2: Color transfer runtimes and values.

Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10�3 ±2.7 · 10�4 0.90 ±6.08 · 10�2

+ W2GN 1k 0.93 ±2.27 · 10�2 1.0 ±2.57 · 10�3

2k 1.84 ±3.78 · 10�2 1.0 ±5.30 · 10�3

W2GN 1k 0.90 ±1.62 · 10�2 0.96 ±2.62 · 10�2

2k 1.81 ±3.05 · 10�2 0.99 ±1.14 · 10�2

We report the mean and (standard deviation) across 10 test instances.

W2GN solver as shown in algorithm 5. App. B discusses other modeling choices we considered:
we tried models based on MAML [Finn et al., 2017] and neural processes [Garnelo et al., 2018b,a].

Amortization objective. We build on the W2GN formulation [Korotin et al., 2019] and seek pa-
rameters '? optimizing the dual ICNN potentials  ' and  ' with L(';↵,�) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with '̂✓(↵,�) param-
eterized by ✓, resulting in a computationally efficient approximation to the optimum '̂✓ ⇡ '

?.
Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 [He et al., 2016] archi-
tecture for coupling image-based measures. We again emphasize that ↵,� used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
✓

E
(↵,�)⇠D

L('̂✓(↵,�);↵,�). (17)

As in the discrete setting, it does not require ground-truth solutions '? and we learn it with Adam.

4 Experiments

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
[Bradbury et al., 2018] as an extension to the the Optimal Transport Tools (OTT) package [Cuturi
et al., 2022]. All experiments take roughly ⇡2 hours to run on our single Quadro GP100 GPU.
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Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ⇡100 times
computationally cheaper and produces a nearly identical coupling.
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Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures ↵ and � into latents z that are decoded with an MLP into the parameters ' of an ICNN
dual potential  '. The derivative of the ICNN provides the transport map T̂ .

Table 1: Sinkhorn runtime (seconds) to reach a
marginal error of 10�2. Meta OT’s initial predic-
tion takes ⇡ 5 · 10�5 seconds.

Initialization MNIST Spherical

Zeros (tzeros) 4.5 · 10�3 ±1.5 · 10�3 0.88 ±0.13
Gaussian 4.1 · 10�3 ±1.2 · 10�3 0.56 ±9.9 · 10�2

Meta OT (tMeta) 2.3 · 10�3 ±9.2 · 10�6 7.8 · 10�2 ±3.4 · 10�2

Improvement (tzeros/tMeta) 1.96 11.3

Table 2: Color transfer runtimes and values.
Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10�3 ±2.7 · 10�4 0.90 ±6.08 · 10�2

+ W2GN 1k 0.93 ±2.27 · 10�2 1.0 ±2.57 · 10�3

2k 1.84 ±3.78 · 10�2 1.0 ±5.30 · 10�3

W2GN 1k 0.90 ±1.62 · 10�2 0.96 ±2.62 · 10�2

2k 1.81 ±3.05 · 10�2 0.99 ±1.14 · 10�2

We report the mean and standard deviation across 10 test instances.

Amortization objective. We build on the W2GN formulation (Korotin et al., 2019) and seek pa-
rameters '? optimizing the dual ICNN potentials  ' and  ' with L(';↵,�) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with '̂✓(↵,�) param-
eterized by ✓, resulting in a computationally efficient approximation to the optimum '̂✓ ⇡ '

?.
Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 (He et al., 2016) archi-
tecture for coupling image-based measures. We again emphasize that ↵,� used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
✓

E
(↵,�)⇠D

L('̂✓(↵,�);↵,�). (18)

As in the discrete setting, it does not require ground-truth solutions '? and we learn it with Adam.

4 EXPERIMENTS

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
(Bradbury et al., 2018) as an extension to the the Optimal Transport Tools (OTT) package (Cuturi
et al., 2022). App. C covers further experimental and implementation details, and shows that all of
our experiments take a few hours to run on our single Quadro GP100 GPU. We will open source the
code to reproduce all of our experiments.
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The Sinkhorn algorithm. Algorithm 1 summarizes the log-space version, which takes closed-form
block coordinate ascent updates on eq. (5) obtained from the first-order optimality conditions (Peyré
et al., 2019, Remark 4.21). We will use it to fine-tune predictions made by our Meta OT models.

Computing the error. Standard implementations of the Sinkhorn algorithm, such as Flamary et al.
(2021); Cuturi et al. (2022), measure the error of a candidate dual solution (f, g) by computing the
deviation from the marginal constraints, which we will also use in comparing our solution quality:

err(f, g;↵,�, c) := kP1m � ak1 + kP>1n � bk1 (compute P from eq. (6)) (7)

Mapping between the duals. The first-order optimality conditions of eq. (5) also provide an equiv-
alence between the optimal dual potentials that we will make use of:

g(f ; b, c) := ✏ log b� ✏ log
�
K

> exp{f/✏}
�
. (8)

2.1.2 DUAL WASSERSTEIN-2 OT BETWEEN CONTINUOUS (EUCLIDEAN) MEASURES

Algorithm 2 W2GN(↵,�,'0)
for iteration i = 1 to N do

Sample from (↵,�) and estimate L('i�1)
Update 'i with approximation to r'L('i�1)

end for

return TN (·) := rx 'N (·) ⇡ T ?(·)

Let ↵ and � be continuous measures in Euclidean
space X = Y = Rd (with ↵ absolutely contin-
uous with respect to the Lebesgue measure) and
the ground cost be the squared Euclidean distance
c(x, y) := kx�yk22. Then the minimum of eq. (1)
defines the square of the Wasserstein-2 distance:

W
2
2 (↵,�) := min

⇡2U(↵,�)

Z

X⇥Y
kx� yk22d⇡(x, y) = min

T

Z

X
kx� T (x)k22d↵(x), (9)

where T is a transport map pushing ↵ to �, i.e. T#↵ = � with the pushforward operator defined
by T#↵(B) := ↵(T�1(B)) for any measurable set B.

Convex dual potentials. The primal form in eq. (9) is difficult to solve, as in the discrete setting, due
to the difficulty of representing the coupling and satisfying the constraints. Makkuva et al. (2020);
Taghvaei and Jalali (2019); Korotin et al. (2019; 2021b; 2022) propose to instead solve the dual:

 
?( · ;↵,�) 2 argmin

 2convex

Z

X
 (x)d↵(x) +

Z

Y
 (y)d�(y), (10)

where  is a convex function referred to as a convex potential, and  (y) := maxx2X hx, yi� (x) is
the Legendre-Fenchel transform or convex conjugate of  (Fenchel, 1949; Rockafellar, 2015). The
potential  is often approximated with an input-convex neural network (ICNN) (Amos et al., 2017).

Recovering the primal solution from the dual. Given an optimal dual  ? for eq. (10), Brenier
(1991) remarkably shows that an optimal map T

? for eq. (9) can be obtained with differentiation:

T
?(x) = rx 

?(x). (11)

Wasserstein-2 Generative Networks (W2GNs). Korotin et al. (2019) model  ' and  ' in eq. (10)
with two separate ICNNs parameterized by '. The separate model for  ' is useful because the
conjugate operation in eq. (10) becomes computationally expensive. They optimize the loss:

L(') := E
x⇠↵

[ '(x)] + E
y⇠�

⇥
hr '(y), yi �  '(r '(y))

⇤

| {z }
Cyclic monotone correlations (dual objective)

+� E
y⇠�

kr ' � r '(y)� yk22,
| {z }

Cycle-consistency regularizer

(12)

where ' is a detached copy of the parameters and � is a hyper-parameter. The first term are the
cyclic monotone correlations (Chartrand et al., 2009; Taghvaei and Jalali, 2019), that optimize the
dual objective in eq. (10), and the second term provides cycle consistency (Zhu et al., 2017) to
estimate the conjugate  . Algorithm 2 shows how L is typically optimized using samples from the
measures, which we use to fine-tune Meta OT predictions.
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↵ � T#↵ T�1
# �

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The Seine by Claude Monet
(1872), obtained from WikiArt.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer

W2GN Meta OT + W2GN

Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.
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W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
The image generating ↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The
Seine by Claude Monet (1872), obtained from WikiArt.

4.2 DISCRETE OT FOR SUPPLY-DEMAND TRANSPORTATION ON SPHERICAL DATA

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
(2015). Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 CONTINUOUS WASSERSTEIN-2 COLOR TRANSFER
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Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. (2019), takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. E shows additional results.
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Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ⇡100 times
computationally cheaper and produces a nearly identical coupling.
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Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures ↵ and � into latents z that are decoded with an MLP into the parameters ' of an ICNN
dual potential  '. The derivative of the ICNN provides the transport map T̂ .

Table 1: Sinkhorn runtime (seconds) to reach a
marginal error of 10�2. Meta OT’s initial predic-
tion takes ⇡ 5 · 10�5 seconds.

Initialization MNIST Spherical

Zeros (tzeros) 4.5 · 10�3 ±1.5 · 10�3 0.88 ±0.13
Gaussian 4.1 · 10�3 ±1.2 · 10�3 0.56 ±9.9 · 10�2

Meta OT (tMeta) 2.3 · 10�3 ±9.2 · 10�6 7.8 · 10�2 ±3.4 · 10�2

Improvement (tzeros/tMeta) 1.96 11.3

Table 2: Color transfer runtimes and values.
Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10�3 ±2.7 · 10�4 0.90 ±6.08 · 10�2

+ W2GN 1k 0.93 ±2.27 · 10�2 1.0 ±2.57 · 10�3

2k 1.84 ±3.78 · 10�2 1.0 ±5.30 · 10�3

W2GN 1k 0.90 ±1.62 · 10�2 0.96 ±2.62 · 10�2

2k 1.81 ±3.05 · 10�2 0.99 ±1.14 · 10�2

We report the mean and standard deviation across 10 test instances.

Amortization objective. We build on the W2GN formulation (Korotin et al., 2019) and seek pa-
rameters '? optimizing the dual ICNN potentials  ' and  ' with L(';↵,�) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with '̂✓(↵,�) param-
eterized by ✓, resulting in a computationally efficient approximation to the optimum '̂✓ ⇡ '

?.
Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 (He et al., 2016) archi-
tecture for coupling image-based measures. We again emphasize that ↵,� used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
✓

E
(↵,�)⇠D

L('̂✓(↵,�);↵,�). (18)

As in the discrete setting, it does not require ground-truth solutions '? and we learn it with Adam.

4 EXPERIMENTS

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
(Bradbury et al., 2018) as an extension to the the Optimal Transport Tools (OTT) package (Cuturi
et al., 2022). App. C covers further experimental and implementation details, and shows that all of
our experiments take a few hours to run on our single Quadro GP100 GPU. We will open source the
code to reproduce all of our experiments.
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Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.
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Amortizing the Kantorovich dual (Meta Optimal Transport)

Amortizing the 𝒄-transform (the convex conjugate)

This talk: amortized optimization for OT
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Solving Euclidean Wasserstein-2 problems

14

Monge problem (primal)
𝑇⋆(𝛼, 𝛽) ∈ argmin

'∈𝒞 *,,
𝔼"∼* 𝑥 − 𝑇 𝑥 .

.

Kantorovich dual
:𝑓 ∈ argmax

/∈ℒ!(*)
− 𝔼"∼*[𝑓 𝑥 ] − 𝔼%∼,[𝑓⋆ 𝑦 ]

Brenier’s theorem gives 𝑇⋆ = ∇ :𝑓
Solve by parameterizing 𝑓# with an MLP and optimizing the dual
Computing the conjugate is hard, so amortize the conjugate

𝒄-transform becomes the convex conjugate
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ON AMORTIZING CONVEX CONJUGATES
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ABSTRACT

This paper focuses on computing the convex conjugate operation that arises when
solving Euclidean Wasserstein-2 optimal transport problems. This conjugation,
which is also referred to as the Legendre-Fenchel conjugate or c-transform, is
considered difficult to compute and in practice, Wasserstein-2 methods are limited
by not being able to exactly conjugate the dual potentials in continuous space.
To overcome this, the computation of the conjugate can be approximated with
amortized optimization, which learns a model to predict the conjugate. I show that
combining amortized approximations to the conjugate with a solver for fine-tuning
significantly improves the quality of transport maps learned for the Wasserstein-2
benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional
couplings and flows considered in the literature.

1 INTRODUCTION

Optimal transportation (Villani, 2009; Ambrosio, 2003; Santambrogio, 2015; Peyré et al., 2019)
is a thriving area of research that provides a way of connecting and transporting between proba-
bility measures. While optimal transport between discrete measures is well-understood, e.g. with
Sinkhorn distances (Cuturi, 2013), optimal transport between continuous measures is an open re-
search topic actively being investigated (Genevay et al., 2016; Seguy et al., 2017; Taghvaei and
Jalali, 2019; Korotin et al., 2019; Makkuva et al., 2020; Fan et al., 2021; Asadulaev et al., 2022).
Continuous OT has applications in generative modeling (Arjovsky et al., 2017; Petzka et al., 2017;
Wu et al., 2018; Liu et al., 2019; Cao et al., 2019; Leygonie et al., 2019), domain adaptation (Luo
et al., 2018; Shen et al., 2018; Xie et al., 2019), barycenter computation (Li et al., 2020; Fan et al.,
2020; Korotin et al., 2021b), and biology (Bunne et al., 2021; 2022; Lübeck et al., 2022).

This paper focuses on estimating the Wasserstein-2 transport map between measures ↵ and � in
Euclidean space, i.e. supp(↵) = supp(�) = Rn with the Euclidean distance as the transport cost.
The Wasserstein-2 transport map, T̆ : Rn ! Rn, is the solution to Monge’s primal formulation:

T̆ 2 arg inf
T2T (↵,�)

E
x⇠↵

kx� T (x)k2, (1)

where T (↵,�) := {T : T#↵ = �} is the set of admissible couplings and the push-forward operator
# is defined by T#↵(B) := ↵(T�1(B)) for a measure ↵, measurable map T , and all measurable
sets B. T̆ exists and is unique under general settings, e.g. as in Santambrogio (2015, Theorem 1.17),
and is often difficult to solve because of the coupling constraints T . Almost every computational

method instead solves the Kantorovich dual, e.g. as formulated in Villani (2009, §5) and Peyré
et al. (2019, §2.5). This paper focuses on the dual associated with the negative inner product cost
(Villani, 2009, eq. 5.12), which introduces a dual potential function f : Rn ! R and solves:

“f 2 arg sup
f2L1(↵)

� E
x⇠↵

[f(x)]� E
y⇠�

[f?(y)] (2)

where L1(↵) is the space of measurable functions that are Lebesgue-integrable over ↵ and f
? is the

convex conjugate, or Legendre-Fenchel transform, of a function f defined by:

f
?(y) := � inf

x2X
Jf (x; y) with objective Jf (x; y) := f(x)� hx, yi. (3)

1



Learning the dual potentials
Parameterize the potential potential 𝑓#: 𝒳 → ℝ

Optimize the dual objective

Assumes access to the exact conjugate is available

Differentiating and applying Danskin’s envelope theorem gives:
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x̆(y) denotes an optimal solution to eq. (3). Even though the eq. (2) searches over functions in
L
1(↵), the optimal dual potential “f is convex (Villani, 2009, theorem 5.10). When one of the

measures has a density, Brenier (1991, theorem 3.1) and McCann (1995) relate “f to an optimal
transport map T̆ for the primal problem in eq. (1) with T̆ (x) = rx

“f(x), and the inverse to the
transport map is given by T̆

�1(y) = ry
“f?(y).

A stream of foundational papers have proposed methods to approximate the dual potential f

with a neural network and learn it by optimizing eq. (2): Taghvaei and Jalali (2019); Korotin
et al. (2019); Makkuva et al. (2020) parameterize f as an input-convex neural network (Amos et al.,
2017), which can universally represent any convex function with enough capacity (Huang et al.,
2020). Other works explore parameterizing f as a non-convex neural network (Nhan Dam et al.,
2019; Korotin et al., 2021a; Rout et al., 2021).

Efficiently solving the conjugation operation in eq. (3) is the key computational challenge to

solving the Kantorovich dual in eq. (2) and is an important design choice. Exactly computing
the conjugate as done in Taghvaei and Jalali (2019) is considered computationally challenging and
approximating it as in Korotin et al. (2019); Makkuva et al. (2020); Nhan Dam et al. (2019); Korotin
et al. (2021a); Rout et al. (2021) may be instable. Korotin et al. (2021a) fortifies this observation:

The [exact conjugate] solver is slow since each optimization step solves a hard subproblem for
computing [the conjugate]. [Solvers that approximate the conjugate] are also hard to optimize:
they either diverge from the start or diverge after converging to nearly-optimal saddle point.

In contrast to these statements on the difficulty of exactly estimating the conjugate operation,

I will show in this paper that computing the (near-)exact conjugate is easy. My key insight
is that the approximate, i.e. amortized, conjugation methods can be combined with a fine-tuning
procedure using the approximate solution as a starting point. Sect. 3 discusses the amortization
design choices and sect. 3.2.2 presents a new amortization perspective on the cycle consistency term
used in Wasserstein-2 generative networks (Korotin et al., 2019), which was previously not seen in
this way. Sect. 5 shows that amortizing and fine-tuning the conjugate results in state-of-the-art

performance in all of the tasks proposed in the Wasserstein-2 benchmark by Korotin et al.

(2021a). Amortization with fine-tuning also nicely models synthetic settings (sect. 6), including for
learning a single-block potential flow without using the likelihood.

2 LEARNING DUAL POTENTIALS: A CONJUGATION PERSPECTIVE

This section reviews the standard methods of learning parameterized dual potentials to solve eq. (2).
The first step is to re-cast the Kantorovich dual problem eq. (2) as being over a parametric family
of potentials f✓ with parameter ✓ as an input-convex neural network (Amos et al., 2017) or a more
general non-convex neural network. Taghvaei and Jalali (2019); Makkuva et al. (2020) have laid the
foundations for optimizing the parametric potentials for the dual objective with:
max

✓
V(✓) where V(✓) := � E

x⇠↵
[f✓(x)]� E

y⇠�
[f?

✓ (y)] = � E
x⇠↵

[f✓(x)]+ E
y⇠�

[Jf✓ (x̆(y))] . (4)

x̆(y) is the solution to the convex conjugate and eq. (4) assumes a finite solution to eq. (2) exists and
replaces the sup with a max. Taghvaei and Jalali (2019) show that the model can be learned, i.e. the
optimal parameters can be found, by taking gradient steps of the dual with respect to the parameters
of the potential, i.e. using r✓V . This derivative going through the loss and conjugation operation
can be obtained by applying Danskin’s envelope theorem (Danskin, 1966; Bertsekas, 1971) and
results in only needing derivatives of the potential:

r✓V(✓) = r✓


� E

x⇠↵
[f✓(x)] + E

y⇠�
[Jf✓ (x̆(y))]

�

= � E
x⇠↵

[r✓f✓(x)] + E
y⇠�

[r✓f✓(x̆(y))]
(5)

where x̆(y) is not differentiated through.

Assumption 1 A standard assumption is that the conjugate is smooth with a well-defined argmin.
This has been shown to hold when f is strongly convex, e.g. in Kakade et al. (2009), or when f is
essentially strictly convex (Rockafellar, 2015, theorem 26.3).
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considered difficult to compute and in practice, Wasserstein-2 methods are limited
by not being able to exactly conjugate the dual potentials in continuous space.
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bility measures. While optimal transport between discrete measures is well-understood, e.g. with
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This paper focuses on estimating the Wasserstein-2 transport map between measures ↵ and � in
Euclidean space, i.e. supp(↵) = supp(�) = Rn with the Euclidean distance as the transport cost.
The Wasserstein-2 transport map, T̆ : Rn ! Rn, is the solution to Monge’s primal formulation:

T̆ 2 arg inf
T2T (↵,�)

E
x⇠↵

kx� T (x)k2, (1)

where T (↵,�) := {T : T#↵ = �} is the set of admissible couplings and the push-forward operator
# is defined by T#↵(B) := ↵(T�1(B)) for a measure ↵, measurable map T , and all measurable
sets B. T̆ exists and is unique under general settings, e.g. as in Santambrogio (2015, Theorem 1.17),
and is often difficult to solve because of the coupling constraints T . Almost every computational

method instead solves the Kantorovich dual, e.g. as formulated in Villani (2009, §5) and Peyré
et al. (2019, §2.5). This paper focuses on the dual associated with the negative inner product cost
(Villani, 2009, eq. 5.12), which introduces a dual potential function f : Rn ! R and solves:

“f 2 arg sup
f2L1(↵)

� E
x⇠↵

[f(x)]� E
y⇠�

[f?(y)] (2)

where L1(↵) is the space of measurable functions that are Lebesgue-integrable over ↵ and f
? is the

convex conjugate, or Legendre-Fenchel transform, of a function f defined by:

f
?(y) := � inf

x2X
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x̆(y) denotes an optimal solution to eq. (3). Even though the eq. (2) searches over functions in
L
1(↵), the optimal dual potential “f is convex (Villani, 2009, theorem 5.10). When one of the

measures has a density, Brenier (1991, theorem 3.1) and McCann (1995) relate “f to an optimal
transport map T̆ for the primal problem in eq. (1) with T̆ (x) = rx

“f(x), and the inverse to the
transport map is given by T̆

�1(y) = ry
“f?(y).

A stream of foundational papers have proposed methods to approximate the dual potential f

with a neural network and learn it by optimizing eq. (2): Taghvaei and Jalali (2019); Korotin
et al. (2019); Makkuva et al. (2020) parameterize f as an input-convex neural network (Amos et al.,
2017), which can universally represent any convex function with enough capacity (Huang et al.,
2020). Other works explore parameterizing f as a non-convex neural network (Nhan Dam et al.,
2019; Korotin et al., 2021a; Rout et al., 2021).

Efficiently solving the conjugation operation in eq. (3) is the key computational challenge to

solving the Kantorovich dual in eq. (2) and is an important design choice. Exactly computing
the conjugate as done in Taghvaei and Jalali (2019) is considered computationally challenging and
approximating it as in Korotin et al. (2019); Makkuva et al. (2020); Nhan Dam et al. (2019); Korotin
et al. (2021a); Rout et al. (2021) may be instable. Korotin et al. (2021a) fortifies this observation:

The [exact conjugate] solver is slow since each optimization step solves a hard subproblem for
computing [the conjugate]. [Solvers that approximate the conjugate] are also hard to optimize:
they either diverge from the start or diverge after converging to nearly-optimal saddle point.

In contrast to these statements on the difficulty of exactly estimating the conjugate operation,

I will show in this paper that computing the (near-)exact conjugate is easy. My key insight
is that the approximate, i.e. amortized, conjugation methods can be combined with a fine-tuning
procedure using the approximate solution as a starting point. Sect. 3 discusses the amortization
design choices and sect. 3.2.2 presents a new amortization perspective on the cycle consistency term
used in Wasserstein-2 generative networks (Korotin et al., 2019), which was previously not seen in
this way. Sect. 5 shows that amortizing and fine-tuning the conjugate results in state-of-the-art

performance in all of the tasks proposed in the Wasserstein-2 benchmark by Korotin et al.

(2021a). Amortization with fine-tuning also nicely models synthetic settings (sect. 6), including for
learning a single-block potential flow without using the likelihood.

2 LEARNING DUAL POTENTIALS: A CONJUGATION PERSPECTIVE

This section reviews the standard methods of learning parameterized dual potentials to solve eq. (2).
The first step is to re-cast the Kantorovich dual problem eq. (2) as being over a parametric family
of potentials f✓ with parameter ✓ as an input-convex neural network (Amos et al., 2017) or a more
general non-convex neural network. Taghvaei and Jalali (2019); Makkuva et al. (2020) have laid the
foundations for optimizing the parametric potentials for the dual objective with:
max

✓
V(✓) where V(✓) := � E

x⇠↵
[f✓(x)]� E

y⇠�
[f?

✓ (y)] = � E
x⇠↵

[f✓(x)]+ E
y⇠�

[Jf✓ (x̆(y))] . (4)

x̆(y) is the solution to the convex conjugate and eq. (4) assumes a finite solution to eq. (2) exists and
replaces the sup with a max. Taghvaei and Jalali (2019) show that the model can be learned, i.e. the
optimal parameters can be found, by taking gradient steps of the dual with respect to the parameters
of the potential, i.e. using r✓V . This derivative going through the loss and conjugation operation
can be obtained by applying Danskin’s envelope theorem (Danskin, 1966; Bertsekas, 1971) and
results in only needing derivatives of the potential:

r✓V(✓) = r✓


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x⇠↵
[f✓(x)] + E
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�
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x⇠↵
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y⇠�
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where x̆(y) is not differentiated through.

Assumption 1 A standard assumption is that the conjugate is smooth with a well-defined argmin.
This has been shown to hold when f is strongly convex, e.g. in Kakade et al. (2009), or when f is
essentially strictly convex (Rockafellar, 2015, theorem 26.3).
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where T (↵,�) := {T : T#↵ = �} is the set of admissible couplings and the push-forward operator
# is defined by T#↵(B) := ↵(T�1(B)) for a measure ↵, measurable map T , and all measurable
sets B. T̆ exists and is unique under general settings, e.g. as in Santambrogio (2015, Theorem 1.17),
and is often difficult to solve because of the coupling constraints T . Almost every computational

method instead solves the Kantorovich dual, e.g. as formulated in Villani (2009, §5) and Peyré
et al. (2019, §2.5). This paper focuses on the dual associated with the negative inner product cost
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Algorithm 1 Learning Wasserstein-2 dual potentials with amortized and fine-tuned conjugation
Inputs: Measures ↵ and � to couple, initial dual potential f✓, and initial amortization model x̃'

while unconverged do

Sample batches {xj} ⇠ ↵ and {yj} ⇠ � indexed by j 2 [N ]
Obtain the amortized prediction of the conjugate x̃'(yj)
Fine-tune the prediction by numerically solving x̆(yj) = CONJUGATE(f, yj , xinit = x̃'(yj))
Update the potential with a gradient estimate of the dual in eq. (5), i.e. r✓V
Update the amortization model with a gradient estimate of a loss from sect. 3, i.e. r'L

end while

return optimal dual potentials f✓ and amortization model x̃'

3.2 CONJUGATE AMORTIZATION LOSS CHOICES

/ krJf (x)k22
Cycle

Jf (x; y)
Objective

kx� x?(y)k22
Regression

x
?(y)

Figure 1: Conjugate amortization losses.

We now turn to the design choice of what loss to opti-
mize so that the amortization model x̃' best-predicts the
solution to the conjugate. In all cases, the loss is differ-
entiable and ' is optimized with a gradient-based opti-
mizer. I present an amortization perspective of methods
not previously presented as amortization methods, which
is useful to help think about improving the amortized pre-
dictions with the fine-tuning and exact solvers in sect. 4.
Figure 1 illustrates the main loss choices.

3.2.1 OBJECTIVE-BASED AMORTIZATION

Nhan Dam et al. (2019) propose to make the amortized prediction as optimal as possible on the
conjugation objective Jf from eq. (3) across samples from �, i.e.:

min
'

Lobj(') where Lobj(') := E
y⇠�

Jf (x̃'(y); y). (6)

We refer to Lobj as objective-based amortization and solve eq. (6) by taking gradient steps r'Lobj

using a Monte-Carlo estimate of the expectation.

Remark 3 The maximin method proposed in Makkuva et al. (2020, theorem 3.3) is equivalent to
maximizing an upper-bound to the dual loss V with respect to ✓ of a potential f✓ and minimizing the
objective-based amortization loss Lobj with respect to ' of an amortization model x̃' := rg'.

Their maximin formulation replaces the exact conjugate x̆ in eq. (4) with an approximation x̃', i.e.:

max
✓

min
'

VMM(✓,') where VMM(✓,') := � E
x⇠↵

[f✓(x)] + E
y⇠�

[Jf✓ (x̃'(y); y)]. (7)

Makkuva et al. (2020) proposes to optimize VMM with gradient ascent-descent steps. For optimizing
✓, VMM(✓,') is an upper bound on the true dual objective V(✓) as discussed in remark 2 with
equality if and only if x̃' = x̆. Evaluating the inner optimization step is exactly the objective-
based amortization update, i.e., r'VMM(✓,') = r'Lobj(') = r'Jf✓ (x̃'(y); y).

Remark 4 Suboptimal predictions of the conjugate often leads to a divergent upper bound on V(✓).
Makkuva et al. (2020, algorithm 1) propose to fix this by running more updates on the amortization
model. In sect. 4, I propose fine-tuning as an alternative to obtain the exact conjugates.

3.2.2 FIRST-ORDER OPTIMALITY AMORTIZATION: CYCLE CONSISTENCY AND W2GN

An alternative to optimizing the dual objective directly as in eq. (6) is to optimize for the first-order
optimality condition. Eq. (3) is an unconstrained minimization problem, so the first-order optimality
condition is that the derivative of the objective is zero, i.e. rxJf (x; y) = rxf(x) � y = 0. The
amortization model can be optimized for the residual norm of this condition with

min
'

Lcycle(') where Lcycle(') := E
y⇠�

krxJf (x̃'(y); y)k22 = E
y⇠�

krxf(x̃'(y))� yk22. (8)
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✓, VMM(✓,') is an upper bound on the true dual objective V(✓) as discussed in remark 2 with
equality if and only if x̃' = x̆. Evaluating the inner optimization step is exactly the objective-
based amortization update, i.e., r'VMM(✓,') = r'Lobj(') = r'Jf✓ (x̃'(y); y).

Remark 4 Suboptimal predictions of the conjugate often leads to a divergent upper bound on V(✓).
Makkuva et al. (2020, algorithm 1) propose to fix this by running more updates on the amortization
model. In sect. 4, I propose fine-tuning as an alternative to obtain the exact conjugates.

3.2.2 FIRST-ORDER OPTIMALITY AMORTIZATION: CYCLE CONSISTENCY AND W2GN

An alternative to optimizing the dual objective directly as in eq. (6) is to optimize for the first-order
optimality condition. Eq. (3) is an unconstrained minimization problem, so the first-order optimality
condition is that the derivative of the objective is zero, i.e. rxJf (x; y) = rxf(x) � y = 0. The
amortization model can be optimized for the residual norm of this condition with

min
'

Lcycle(') where Lcycle(') := E
y⇠�

krxJf (x̃'(y); y)k22 = E
y⇠�

krxf(x̃'(y))� yk22. (8)
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ABSTRACT

This paper focuses on computing the convex conjugate operation that arises when
solving Euclidean Wasserstein-2 optimal transport problems. This conjugation,
which is also referred to as the Legendre-Fenchel conjugate or c-transform, is
considered difficult to compute and in practice, Wasserstein-2 methods are limited
by not being able to exactly conjugate the dual potentials in continuous space.
To overcome this, the computation of the conjugate can be approximated with
amortized optimization, which learns a model to predict the conjugate. I show that
combining amortized approximations to the conjugate with a solver for fine-tuning
significantly improves the quality of transport maps learned for the Wasserstein-2
benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional
couplings and flows considered in the literature.

1 INTRODUCTION

Optimal transportation (Villani, 2009; Ambrosio, 2003; Santambrogio, 2015; Peyré et al., 2019)
is a thriving area of research that provides a way of connecting and transporting between proba-
bility measures. While optimal transport between discrete measures is well-understood, e.g. with
Sinkhorn distances (Cuturi, 2013), optimal transport between continuous measures is an open re-
search topic actively being investigated (Genevay et al., 2016; Seguy et al., 2017; Taghvaei and
Jalali, 2019; Korotin et al., 2019; Makkuva et al., 2020; Fan et al., 2021; Asadulaev et al., 2022).
Continuous OT has applications in generative modeling (Arjovsky et al., 2017; Petzka et al., 2017;
Wu et al., 2018; Liu et al., 2019; Cao et al., 2019; Leygonie et al., 2019), domain adaptation (Luo
et al., 2018; Shen et al., 2018; Xie et al., 2019), barycenter computation (Li et al., 2020; Fan et al.,
2020; Korotin et al., 2021b), and biology (Bunne et al., 2021; 2022; Lübeck et al., 2022).

This paper focuses on estimating the Wasserstein-2 transport map between measures ↵ and � in
Euclidean space, i.e. supp(↵) = supp(�) = Rn with the Euclidean distance as the transport cost.
The Wasserstein-2 transport map, T̆ : Rn ! Rn, is the solution to Monge’s primal formulation:

T̆ 2 arg inf
T2T (↵,�)

E
x⇠↵

kx� T (x)k2, (1)

where T (↵,�) := {T : T#↵ = �} is the set of admissible couplings and the push-forward operator
# is defined by T#↵(B) := ↵(T�1(B)) for a measure ↵, measurable map T , and all measurable
sets B. T̆ exists and is unique under general settings, e.g. as in Santambrogio (2015, Theorem 1.17),
and is often difficult to solve because of the coupling constraints T . Almost every computational

method instead solves the Kantorovich dual, e.g. as formulated in Villani (2009, §5) and Peyré
et al. (2019, §2.5). This paper focuses on the dual associated with the negative inner product cost
(Villani, 2009, eq. 5.12), which introduces a dual potential function f : Rn ! R and solves:

“f 2 arg sup
f2L1(↵)

� E
x⇠↵

[f(x)]� E
y⇠�

[f?(y)] (2)

where L1(↵) is the space of measurable functions that are Lebesgue-integrable over ↵ and f
? is the

convex conjugate, or Legendre-Fenchel transform, of a function f defined by:

f
?(y) := � inf

x2X
Jf (x; y) with objective Jf (x; y) := f(x)� hx, yi. (3)
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Algorithm 1 Learning Wasserstein-2 dual potentials with amortized and fine-tuned conjugation
Inputs: Measures ↵ and � to couple, initial dual potential f✓, and initial amortization model x̃'

while unconverged do

Sample batches {xj} ⇠ ↵ and {yj} ⇠ � indexed by j 2 [N ]
Obtain the amortized prediction of the conjugate x̃'(yj)
Fine-tune the prediction by numerically solving x̆(yj) = CONJUGATE(f, yj , xinit = x̃'(yj))
Update the potential with a gradient estimate of the dual in eq. (5), i.e. r✓V
Update the amortization model with a gradient estimate of a loss from sect. 3, i.e. r'L

end while

return optimal dual potentials f✓ and amortization model x̃'

3.2 CONJUGATE AMORTIZATION LOSS CHOICES

/ krJf (x)k22
Cycle

Jf (x; y)
Objective

kx� x?(y)k22
Regression

x
?(y)

Figure 1: Conjugate amortization losses.

We now turn to the design choice of what loss to opti-
mize so that the amortization model x̃' best-predicts the
solution to the conjugate. In all cases, the loss is differ-
entiable and ' is optimized with a gradient-based opti-
mizer. I present an amortization perspective of methods
not previously presented as amortization methods, which
is useful to help think about improving the amortized pre-
dictions with the fine-tuning and exact solvers in sect. 4.
Figure 1 illustrates the main loss choices.

3.2.1 OBJECTIVE-BASED AMORTIZATION

Nhan Dam et al. (2019) propose to make the amortized prediction as optimal as possible on the
conjugation objective Jf from eq. (3) across samples from �, i.e.:

min
'

Lobj(') where Lobj(') := E
y⇠�

Jf (x̃'(y); y). (6)

We refer to Lobj as objective-based amortization and solve eq. (6) by taking gradient steps r'Lobj

using a Monte-Carlo estimate of the expectation.

Remark 3 The maximin method proposed in Makkuva et al. (2020, theorem 3.3) is equivalent to
maximizing an upper-bound to the dual loss V with respect to ✓ of a potential f✓ and minimizing the
objective-based amortization loss Lobj with respect to ' of an amortization model x̃' := rg'.

Their maximin formulation replaces the exact conjugate x̆ in eq. (4) with an approximation x̃', i.e.:

max
✓

min
'

VMM(✓,') where VMM(✓,') := � E
x⇠↵

[f✓(x)] + E
y⇠�

[Jf✓ (x̃'(y); y)]. (7)

Makkuva et al. (2020) proposes to optimize VMM with gradient ascent-descent steps. For optimizing
✓, VMM(✓,') is an upper bound on the true dual objective V(✓) as discussed in remark 2 with
equality if and only if x̃' = x̆. Evaluating the inner optimization step is exactly the objective-
based amortization update, i.e., r'VMM(✓,') = r'Lobj(') = r'Jf✓ (x̃'(y); y).

Remark 4 Suboptimal predictions of the conjugate often leads to a divergent upper bound on V(✓).
Makkuva et al. (2020, algorithm 1) propose to fix this by running more updates on the amortization
model. In sect. 4, I propose fine-tuning as an alternative to obtain the exact conjugates.

3.2.2 FIRST-ORDER OPTIMALITY AMORTIZATION: CYCLE CONSISTENCY AND W2GN

An alternative to optimizing the dual objective directly as in eq. (6) is to optimize for the first-order
optimality condition. Eq. (3) is an unconstrained minimization problem, so the first-order optimality
condition is that the derivative of the objective is zero, i.e. rxJf (x; y) = rxf(x) � y = 0. The
amortization model can be optimized for the residual norm of this condition with

min
'

Lcycle(') where Lcycle(') := E
y⇠�

krxJf (x̃'(y); y)k22 = E
y⇠�

krxf(x̃'(y))� yk22. (8)

4

Under review as a conference paper at ICLR 2023

Algorithm 1 Learning Wasserstein-2 dual potentials with amortized and fine-tuned conjugation
Inputs: Measures ↵ and � to couple, initial dual potential f✓, and initial amortization model x̃'

while unconverged do

Sample batches {xj} ⇠ ↵ and {yj} ⇠ � indexed by j 2 [N ]
Obtain the amortized prediction of the conjugate x̃'(yj)
Fine-tune the prediction by numerically solving x̆(yj) = CONJUGATE(f, yj , xinit = x̃'(yj))
Update the potential with a gradient estimate of the dual in eq. (5), i.e. r✓V
Update the amortization model with a gradient estimate of a loss from sect. 3, i.e. r'L

end while

return optimal dual potentials f✓ and amortization model x̃'

3.2 CONJUGATE AMORTIZATION LOSS CHOICES

/ krJf (x)k22
Cycle

Jf (x; y)
Objective

kx� x?(y)k22
Regression

x
?(y)

Figure 1: Conjugate amortization losses.

We now turn to the design choice of what loss to opti-
mize so that the amortization model x̃' best-predicts the
solution to the conjugate. In all cases, the loss is differ-
entiable and ' is optimized with a gradient-based opti-
mizer. I present an amortization perspective of methods
not previously presented as amortization methods, which
is useful to help think about improving the amortized pre-
dictions with the fine-tuning and exact solvers in sect. 4.
Figure 1 illustrates the main loss choices.

3.2.1 OBJECTIVE-BASED AMORTIZATION

Nhan Dam et al. (2019) propose to make the amortized prediction as optimal as possible on the
conjugation objective Jf from eq. (3) across samples from �, i.e.:

min
'

Lobj(') where Lobj(') := E
y⇠�

Jf (x̃'(y); y). (6)

We refer to Lobj as objective-based amortization and solve eq. (6) by taking gradient steps r'Lobj

using a Monte-Carlo estimate of the expectation.

Remark 3 The maximin method proposed in Makkuva et al. (2020, theorem 3.3) is equivalent to
maximizing an upper-bound to the dual loss V with respect to ✓ of a potential f✓ and minimizing the
objective-based amortization loss Lobj with respect to ' of an amortization model x̃' := rg'.

Their maximin formulation replaces the exact conjugate x̆ in eq. (4) with an approximation x̃', i.e.:

max
✓

min
'

VMM(✓,') where VMM(✓,') := � E
x⇠↵

[f✓(x)] + E
y⇠�

[Jf✓ (x̃'(y); y)]. (7)

Makkuva et al. (2020) proposes to optimize VMM with gradient ascent-descent steps. For optimizing
✓, VMM(✓,') is an upper bound on the true dual objective V(✓) as discussed in remark 2 with
equality if and only if x̃' = x̆. Evaluating the inner optimization step is exactly the objective-
based amortization update, i.e., r'VMM(✓,') = r'Lobj(') = r'Jf✓ (x̃'(y); y).

Remark 4 Suboptimal predictions of the conjugate often leads to a divergent upper bound on V(✓).
Makkuva et al. (2020, algorithm 1) propose to fix this by running more updates on the amortization
model. In sect. 4, I propose fine-tuning as an alternative to obtain the exact conjugates.

3.2.2 FIRST-ORDER OPTIMALITY AMORTIZATION: CYCLE CONSISTENCY AND W2GN

An alternative to optimizing the dual objective directly as in eq. (6) is to optimize for the first-order
optimality condition. Eq. (3) is an unconstrained minimization problem, so the first-order optimality
condition is that the derivative of the objective is zero, i.e. rxJf (x; y) = rxf(x) � y = 0. The
amortization model can be optimized for the residual norm of this condition with

min
'

Lcycle(') where Lcycle(') := E
y⇠�

krxJf (x̃'(y); y)k22 = E
y⇠�

krxf(x̃'(y))� yk22. (8)

4



Extremely easy to fine-tune a prediction with Adam or L-BFGS
Gives a much more stable estimation for the dual objective

Amortize by regressing onto the fine-tuned prediction:

Fine-tuning and regression

Brandon Amos Amortized optimization for computing optimal transport maps 18

Under review as a conference paper at ICLR 2023

Remark 5 W2GN (Korotin et al., 2019) is equivalent to maximizing an upper-bound to the dual
loss V with respect to ✓ of a potential f✓ and minimizing the first-order amortization loss Lcycle

with respect to ' of an amortization model x̃' := rg'. Korotin et al. (2019) originally motivated
the cycle consistency term from the use in cross-domain generative modeling Zhu et al. (2017) and
eq. (8) shows an alternative way of deriving the cycle consistency term by amortizing the first-
order optimality conditions of the conjugate.

Remark 6 The formulation in Korotin et al. (2019) does not disconnect f✓ when optimizing the cy-
cle loss in eq. (8). From an amortization perspective, this performs amortization by updating f✓ to
have a solution closer to x̃' rather than the usual amortization setting of updating x̃' to make a pre-
diction closer to the solution of f✓. In my experiments, updating f✓ with the amortization term seems
to help when not fine-tuning the conjugate to be exact, but hurts when using the exact conjugates.

Remark 7 Korotin et al. (2019) and followup papers such as Korotin et al. (2021b) state that they
are not a maximin optimization procedure as in eq. (7) from Makkuva et al. (2020) because they
replace the inner optimization of the conjugate with an approximation. I disagree that the main
distinction between these methods should be based on their formulation as a maximin optimiza-
tion problem. I instead propose that the main difference between their losses is how they amortize
the convex conjugate: Makkuva et al. (2020) use the objective-based loss in eq. (6) while Korotin
et al. (2019) use the first-order optimality condition (eq. (8)). Sect. 5 shows that adding fine-tuning
and exact conjugates to both of these methods makes their performance match in most cases.

Remark 8 Optimizing for the first-order optimality conditions may not be ideal for non-convex
conjugate objectives as inflection points with a near-zero derivative may not be a global minimum
of eq. (3). The left and right regions of fig. 1 illustrate this.

3.2.3 REGRESSION-BASED AMORTIZATION

The previous objective and first-order amortization methods locally refine the model’s prediction
using local derivative information. The amortization model can also be trained by regressing onto
ground-truth solutions when they are available, i.e.

min
'

Lreg(') where Lreg(') := E
y⇠�

kx̃'(y)� x̆(y)k22. (9)

This regression loss is the most useful when approximations to the conjugate are computationally
easy to obtain, e.g. with a method described in sect. 4. Lreg gives the amortization model informa-
tion about where the globally optimal solution is rather than requiring it to only locally search over
the conjugate’s objective J .

4 NUMERICAL SOLVERS FOR EXACT CONJUGATES AND FINE TUNING

Algorithm 2 CONJUGATE(f, y, xinit)

x xinit

while unconverged do

Update x withrxJf (x; y)
end while

return optimal x̆(y) = x

In the Euclidean Wasserstein-2 setting, the conjugation oper-
ation in eq. (3) is a continuous and unconstrained optimiza-
tion problem over a possibly non-convex potential f . It is
usually implemented with a method using first-order infor-
mation for the update in algorithm 2, such as:

1. Adam (Kingma and Ba, 2014) is an adaptive first-order optimizer for high-dimensional
optimization problems and is used for the exact conjugations in Korotin et al. (2021a).
Note: Adam here is for algorithm 2 and is not performing parameter optimization.

2. L-BFGS (Liu and Nocedal, 1989) is a quasi-Newton method for optimizing unconstrained
convex functions. App. A discusses more implementation details behind setting up L-
BFGS efficiently to run on the batches of optimization problems considered here. Choos-
ing the line search method is the most crucial part as the conditional nature of some line
searches may be prohibitive over batches. Table 3 shows that an Armijo search often works
well to obtain approximate solutions.
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Table 1: Comparison of L2-UVP on the high-dimensional tasks from the Wasserstein-2 benchmark
by Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and stan-
dard deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam

consistently improves the quality of the learned potential.

Baselines from Korotin et al. (2021a)
Amortization loss Conjugate solver D = 2 D = 4 D = 8 D = 16 D = 32 D = 64 D = 128 D = 256

*[W2] Cycle None 0.1 0.7 2.6 3.3 6.0 7.2 2.0 2.7
*[MMv1] None Adam 0.2 1.0 1.8 1.4 6.9 8.1 2.2 2.6
*[MMv2] Objective None 0.1 0.68 2.2 3.1 5.3 10.1 3.2 2.7

*[MM] Objective None 0.1 0.3 0.9 2.2 4.2 3.2 3.1 4.1

Potential model: the input convex neural network described in app. B.3 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver D = 2 D = 4 D = 8 D = 16 D = 32 D = 64 D = 128 D = 256

Cycle None 0.28 ±0.09 0.90 ±0.11 2.23 ±0.20 3.03 ±0.06 5.32 ±0.14 8.79 ±0.16 5.66 ±0.45 4.34 ±0.14
Objective None 0.27 ±0.09 0.78 ±0.12 1.78 ±0.26 2.00 ±0.11 >100 >100 >100 >100

Cycle L-BFGS 0.26 ±0.09 0.77 ±0.11 1.63 ±0.28 1.15 ±0.14 2.02 ±0.10 4.48 ±0.89 1.65 ±0.10 5.93 ±9.43
Objective L-BFGS 0.26 ±0.09 0.79 ±0.12 1.63 ±0.30 1.12 ±0.11 1.92 ±0.19 4.40 ±0.79 1.64 ±0.11 2.24 ±0.13

Regression L-BFGS 0.26 ±0.09 0.78 ±0.12 1.64 ±0.29 1.14 ±0.12 1.93 ±0.20 4.41 ±0.74 1.69 ±0.11 2.21 ±0.15

Cycle Adam 0.26 ±0.09 0.79 ±0.11 1.62 ±0.29 1.14 ±0.12 1.95 ±0.21 4.55 ±0.62 1.88 ±0.26 >100
Objective Adam 0.26 ±0.09 0.79 ±0.14 1.62 ±0.31 1.08 ±0.14 1.89 ±0.19 4.23 ±0.76 1.59 ±0.12 1.99 ±0.15

Regression Adam 0.35 ±0.07 0.81 ±0.12 1.61 ±0.32 1.09 ±0.11 1.85 ±0.20 4.42 ±0.68 1.63 ±0.08 1.99 ±0.16

Potential model: the non-convex neural network (MLP) described in app. B.4 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver D = 2 D = 4 D = 8 D = 16 D = 32 D = 64 D = 128 D = 256

Cycle None 0.05 ±0.00 0.35 ±0.01 1.51 ±0.08 >100 >100 >100 >100 >100
Objective None >100 >100 >100 >100 >100 >100 >100 >100

Cycle L-BFGS >100 >100 >100 >100 >100 >100 >100 >100
Objective L-BFGS 0.03 ±0.00 0.22 ±0.01 0.60 ±0.03 0.80 ±0.11 2.09 ±0.31 2.08 ±0.40 0.67 ±0.05 0.59 ±0.04

Regression L-BFGS 0.03 ±0.00 0.22 ±0.01 0.61 ±0.04 0.77 ±0.10 1.97 ±0.38 2.08 ±0.39 0.67 ±0.05 0.65 ±0.07

Cycle Adam 0.18 ±0.03 0.69 ±0.56 1.62 ±2.82 >100 >100 >100 >100 >100
Objective Adam 0.06 ±0.01 0.26 ±0.02 0.63 ±0.07 0.81 ±0.10 1.99 ±0.32 2.21 ±0.32 0.77 ±0.05 0.66 ±0.07

Regression Adam 0.22 ±0.01 0.28 ±0.02 0.61 ±0.07 0.80 ±0.10 2.07 ±0.38 2.37 ±0.46 0.77 ±0.06 0.75 ±0.09

Improvement factor over prior work 3.3 3.1 3.0 1.8 2.7 1.5 3.0 4.4

Table 2: Comparison of L2-UVP on the CelebA64 tasks from the Wasserstein-2 benchmark by
Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and standard
deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam con-

sistently improves the quality of the learned potential. The ConvICNN64 and ResNet potential
models are from Korotin et al. (2021a), and app. B.5 describes the (non-convex) ConvNet model.

Amortization loss Conjugate solver Potential Model Early Generator Mid Generator Late Generator

*[W2] Cycle None ConvICNN64 1.7 0.5 0.25
*[MM] Objective None ResNet 2.2 0.9 0.53

*[MM-R†] Objective None ResNet 1.4 0.4 0.22

Cycle None ConvNet >100 26.50 ±60.14 0.29 ±0.59
Objective None ConvNet >100 0.29 ±0.15 0.69 ±0.90

Cycle Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.04
Cycle L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.00

Objective Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.05
Objective L-BFGS ConvNet 0.61 ±0.01 0.20 ±0.00 0.09 ±0.00

Regression Adam ConvNet 0.66 ±0.01 0.21 ±0.00 0.12 ±0.00
Regression L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.01

Improvement factor over prior work 2.3 2.0 2.4
†the reversed direction from Korotin et al. (2021a), i.e. the potential model is associated with the � measure
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Figure 2: Conjugate solver convergence on the HD benchmarks with an ICNN potential.
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Table 1: Comparison of L2-UVP on the high-dimensional tasks from the Wasserstein-2 benchmark
by Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and stan-
dard deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam

consistently improves the quality of the learned potential.

Baselines from Korotin et al. (2021a)
Amortization loss Conjugate solver D = 2 D = 4 D = 8 D = 16 D = 32 D = 64 D = 128 D = 256

*[W2] Cycle None 0.1 0.7 2.6 3.3 6.0 7.2 2.0 2.7
*[MMv1] None Adam 0.2 1.0 1.8 1.4 6.9 8.1 2.2 2.6
*[MMv2] Objective None 0.1 0.68 2.2 3.1 5.3 10.1 3.2 2.7

*[MM] Objective None 0.1 0.3 0.9 2.2 4.2 3.2 3.1 4.1

Potential model: the input convex neural network described in app. B.3 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver D = 2 D = 4 D = 8 D = 16 D = 32 D = 64 D = 128 D = 256

Cycle None 0.28 ±0.09 0.90 ±0.11 2.23 ±0.20 3.03 ±0.06 5.32 ±0.14 8.79 ±0.16 5.66 ±0.45 4.34 ±0.14
Objective None 0.27 ±0.09 0.78 ±0.12 1.78 ±0.26 2.00 ±0.11 >100 >100 >100 >100

Cycle L-BFGS 0.26 ±0.09 0.77 ±0.11 1.63 ±0.28 1.15 ±0.14 2.02 ±0.10 4.48 ±0.89 1.65 ±0.10 5.93 ±9.43
Objective L-BFGS 0.26 ±0.09 0.79 ±0.12 1.63 ±0.30 1.12 ±0.11 1.92 ±0.19 4.40 ±0.79 1.64 ±0.11 2.24 ±0.13

Regression L-BFGS 0.26 ±0.09 0.78 ±0.12 1.64 ±0.29 1.14 ±0.12 1.93 ±0.20 4.41 ±0.74 1.69 ±0.11 2.21 ±0.15

Cycle Adam 0.26 ±0.09 0.79 ±0.11 1.62 ±0.29 1.14 ±0.12 1.95 ±0.21 4.55 ±0.62 1.88 ±0.26 >100
Objective Adam 0.26 ±0.09 0.79 ±0.14 1.62 ±0.31 1.08 ±0.14 1.89 ±0.19 4.23 ±0.76 1.59 ±0.12 1.99 ±0.15

Regression Adam 0.35 ±0.07 0.81 ±0.12 1.61 ±0.32 1.09 ±0.11 1.85 ±0.20 4.42 ±0.68 1.63 ±0.08 1.99 ±0.16

Potential model: the non-convex neural network (MLP) described in app. B.4 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver D = 2 D = 4 D = 8 D = 16 D = 32 D = 64 D = 128 D = 256

Cycle None 0.05 ±0.00 0.35 ±0.01 1.51 ±0.08 >100 >100 >100 >100 >100
Objective None >100 >100 >100 >100 >100 >100 >100 >100

Cycle L-BFGS >100 >100 >100 >100 >100 >100 >100 >100
Objective L-BFGS 0.03 ±0.00 0.22 ±0.01 0.60 ±0.03 0.80 ±0.11 2.09 ±0.31 2.08 ±0.40 0.67 ±0.05 0.59 ±0.04

Regression L-BFGS 0.03 ±0.00 0.22 ±0.01 0.61 ±0.04 0.77 ±0.10 1.97 ±0.38 2.08 ±0.39 0.67 ±0.05 0.65 ±0.07

Cycle Adam 0.18 ±0.03 0.69 ±0.56 1.62 ±2.82 >100 >100 >100 >100 >100
Objective Adam 0.06 ±0.01 0.26 ±0.02 0.63 ±0.07 0.81 ±0.10 1.99 ±0.32 2.21 ±0.32 0.77 ±0.05 0.66 ±0.07

Regression Adam 0.22 ±0.01 0.28 ±0.02 0.61 ±0.07 0.80 ±0.10 2.07 ±0.38 2.37 ±0.46 0.77 ±0.06 0.75 ±0.09

Improvement factor over prior work 3.3 3.1 3.0 1.8 2.7 1.5 3.0 4.4

Table 2: Comparison of L2-UVP on the CelebA64 tasks from the Wasserstein-2 benchmark by
Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and standard
deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam con-

sistently improves the quality of the learned potential. The ConvICNN64 and ResNet potential
models are from Korotin et al. (2021a), and app. B.5 describes the (non-convex) ConvNet model.

Amortization loss Conjugate solver Potential Model Early Generator Mid Generator Late Generator

*[W2] Cycle None ConvICNN64 1.7 0.5 0.25
*[MM] Objective None ResNet 2.2 0.9 0.53

*[MM-R†] Objective None ResNet 1.4 0.4 0.22

Cycle None ConvNet >100 26.50 ±60.14 0.29 ±0.59
Objective None ConvNet >100 0.29 ±0.15 0.69 ±0.90

Cycle Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.04
Cycle L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.00

Objective Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.05
Objective L-BFGS ConvNet 0.61 ±0.01 0.20 ±0.00 0.09 ±0.00

Regression Adam ConvNet 0.66 ±0.01 0.21 ±0.00 0.12 ±0.00
Regression L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.01

Improvement factor over prior work 2.3 2.0 2.4
†the reversed direction from Korotin et al. (2021a), i.e. the potential model is associated with the � measure

0 10 20 30 40 50

Solver Iteration

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

J
(x

;y
)

D = 64

0 10 20 30 40 50

Solver Iteration

D = 128

0 10 20 30 40 50

Solver Iteration

D = 256

Amortized Initialization + L-BFGS L-BFGS Adam

Figure 2: Conjugate solver convergence on the HD benchmarks with an ICNN potential.
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Evaluation metric: unexplained variance percentage
Results on the Wasserstein 2 benchmark (NeurIPS 2021)

On amortizing convex conjugates for optimal transport. Amos, 2022.



Learning flows via the Kantorovich dual
Challenges for learning flows (with potentials or otherwise)
1. The model needs to be invertible
2. The likelihood of the base density is required

Optimizing the potential-based flow for the Kantorovich dual can help with both of these!
1. Often parameterize the model as a non-convex MLP, invertibility no longer matters
2. Only requires samples from the densities
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x̆(y) denotes an optimal solution to eq. (3). Even though the eq. (2) searches over functions in
L
1(↵), the optimal dual potential “f is convex (Villani, 2009, theorem 5.10). When one of the

measures has a density, Brenier (1991, theorem 3.1) and McCann (1995) relate “f to an optimal
transport map T̆ for the primal problem in eq. (1) with T̆ (x) = rx

“f(x), and the inverse to the
transport map is given by T̆

�1(y) = ry
“f?(y).

A stream of foundational papers have proposed methods to approximate the dual potential f

with a neural network and learn it by optimizing eq. (2): Taghvaei and Jalali (2019); Korotin
et al. (2019); Makkuva et al. (2020) parameterize f as an input-convex neural network (Amos et al.,
2017), which can universally represent any convex function with enough capacity (Huang et al.,
2020). Other works explore parameterizing f as a non-convex neural network (Nhan Dam et al.,
2019; Korotin et al., 2021a; Rout et al., 2021).

Efficiently solving the conjugation operation in eq. (3) is the key computational challenge to

solving the Kantorovich dual in eq. (2) and is an important design choice. Exactly computing
the conjugate as done in Taghvaei and Jalali (2019) is considered computationally challenging and
approximating it as in Korotin et al. (2019); Makkuva et al. (2020); Nhan Dam et al. (2019); Korotin
et al. (2021a); Rout et al. (2021) may be instable. Korotin et al. (2021a) fortifies this observation:

The [exact conjugate] solver is slow since each optimization step solves a hard subproblem for
computing [the conjugate]. [Solvers that approximate the conjugate] are also hard to optimize:
they either diverge from the start or diverge after converging to nearly-optimal saddle point.

In contrast to these statements on the difficulty of exactly estimating the conjugate operation,

I will show in this paper that computing the (near-)exact conjugate is easy. My key insight
is that the approximate, i.e. amortized, conjugation methods can be combined with a fine-tuning
procedure using the approximate solution as a starting point. Sect. 3 discusses the amortization
design choices and sect. 3.2.2 presents a new amortization perspective on the cycle consistency term
used in Wasserstein-2 generative networks (Korotin et al., 2019), which was previously not seen in
this way. Sect. 5 shows that amortizing and fine-tuning the conjugate results in state-of-the-art

performance in all of the tasks proposed in the Wasserstein-2 benchmark by Korotin et al.

(2021a). Amortization with fine-tuning also nicely models synthetic settings (sect. 6), including for
learning a single-block potential flow without using the likelihood.

2 LEARNING DUAL POTENTIALS: A CONJUGATION PERSPECTIVE

This section reviews the standard methods of learning parameterized dual potentials to solve eq. (2).
The first step is to re-cast the Kantorovich dual problem eq. (2) as being over a parametric family
of potentials f✓ with parameter ✓ as an input-convex neural network (Amos et al., 2017) or a more
general non-convex neural network. Taghvaei and Jalali (2019); Makkuva et al. (2020) have laid the
foundations for optimizing the parametric potentials for the dual objective with:
max

✓
V(✓) where V(✓) := � E

x⇠↵
[f✓(x)]� E

y⇠�
[f?

✓ (y)] = � E
x⇠↵

[f✓(x)]+ E
y⇠�

[Jf✓ (x̆(y))] . (4)

x̆(y) is the solution to the convex conjugate and eq. (4) assumes a finite solution to eq. (2) exists and
replaces the sup with a max. Taghvaei and Jalali (2019) show that the model can be learned, i.e. the
optimal parameters can be found, by taking gradient steps of the dual with respect to the parameters
of the potential, i.e. using r✓V . This derivative going through the loss and conjugation operation
can be obtained by applying Danskin’s envelope theorem (Danskin, 1966; Bertsekas, 1971) and
results in only needing derivatives of the potential:

r✓V(✓) = r✓


� E

x⇠↵
[f✓(x)] + E

y⇠�
[Jf✓ (x̆(y))]

�

= � E
x⇠↵

[r✓f✓(x)] + E
y⇠�

[r✓f✓(x̆(y))]
(5)

where x̆(y) is not differentiated through.

Assumption 1 A standard assumption is that the conjugate is smooth with a well-defined argmin.
This has been shown to hold when f is strongly convex, e.g. in Kakade et al. (2009), or when f is
essentially strictly convex (Rockafellar, 2015, theorem 26.3).
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ON AMORTIZING CONVEX CONJUGATES
FOR OPTIMAL TRANSPORT

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper focuses on computing the convex conjugate operation that arises when
solving Euclidean Wasserstein-2 optimal transport problems. This conjugation,
which is also referred to as the Legendre-Fenchel conjugate or c-transform, is
considered difficult to compute and in practice, Wasserstein-2 methods are limited
by not being able to exactly conjugate the dual potentials in continuous space.
To overcome this, the computation of the conjugate can be approximated with
amortized optimization, which learns a model to predict the conjugate. I show that
combining amortized approximations to the conjugate with a solver for fine-tuning
significantly improves the quality of transport maps learned for the Wasserstein-2
benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional
couplings and flows considered in the literature.

1 INTRODUCTION

Optimal transportation (Villani, 2009; Ambrosio, 2003; Santambrogio, 2015; Peyré et al., 2019)
is a thriving area of research that provides a way of connecting and transporting between proba-
bility measures. While optimal transport between discrete measures is well-understood, e.g. with
Sinkhorn distances (Cuturi, 2013), optimal transport between continuous measures is an open re-
search topic actively being investigated (Genevay et al., 2016; Seguy et al., 2017; Taghvaei and
Jalali, 2019; Korotin et al., 2019; Makkuva et al., 2020; Fan et al., 2021; Asadulaev et al., 2022).
Continuous OT has applications in generative modeling (Arjovsky et al., 2017; Petzka et al., 2017;
Wu et al., 2018; Liu et al., 2019; Cao et al., 2019; Leygonie et al., 2019), domain adaptation (Luo
et al., 2018; Shen et al., 2018; Xie et al., 2019), barycenter computation (Li et al., 2020; Fan et al.,
2020; Korotin et al., 2021b), and biology (Bunne et al., 2021; 2022; Lübeck et al., 2022).

This paper focuses on estimating the Wasserstein-2 transport map between measures ↵ and � in
Euclidean space, i.e. supp(↵) = supp(�) = Rn with the Euclidean distance as the transport cost.
The Wasserstein-2 transport map, T̆ : Rn ! Rn, is the solution to Monge’s primal formulation:

T̆ 2 arg inf
T2T (↵,�)

E
x⇠↵

kx� T (x)k2, (1)

where T (↵,�) := {T : T#↵ = �} is the set of admissible couplings and the push-forward operator
# is defined by T#↵(B) := ↵(T�1(B)) for a measure ↵, measurable map T , and all measurable
sets B. T̆ exists and is unique under general settings, e.g. as in Santambrogio (2015, Theorem 1.17),
and is often difficult to solve because of the coupling constraints T . Almost every computational

method instead solves the Kantorovich dual, e.g. as formulated in Villani (2009, §5) and Peyré
et al. (2019, §2.5). This paper focuses on the dual associated with the negative inner product cost
(Villani, 2009, eq. 5.12), which introduces a dual potential function f : Rn ! R and solves:

“f 2 arg sup
f2L1(↵)

� E
x⇠↵

[f(x)]� E
y⇠�

[f?(y)] (2)

where L1(↵) is the space of measurable functions that are Lebesgue-integrable over ↵ and f
? is the

convex conjugate, or Legendre-Fenchel transform, of a function f defined by:

f
?(y) := � inf

x2X
Jf (x; y) with objective Jf (x; y) := f(x)� hx, yi. (3)
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make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
all quantities of interest.

In terms of the benefits of parameterizing a flow as a gradient field, the convex potential is an
Rd

! R function, which is different from most existing discrete-time flows which are Rd
! Rd.

This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.

2 BACKGROUND: NORMALIZING FLOWS AND OPTIMAL TRANSPORT

Normalizing flows are characterized by a differentiable, invertible neural network f such that the
probability density of the network’s output can be computed conveniently using the change-of-
variable formula

pY (f(x)) = pX(x)

����
@f(x)

@x

����
�1

() pY (y) = pX(f�1(y))

����
@f

�1(y)

@y

���� (1)

where the Jacobian determinant term captures the local expansion or contraction of the density near
x (resp. y) induced by the mapping f (resp. f

�1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.
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Conclusions

Amortized optimization foundations are here!
Useful for the optimal transport dual or 𝒄-transform

The amortized prediction does not need to be highly accurate
Can easily check optimality conditions and fine-tune
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𝑦⋆ 𝑥 ∈ argmin
%

𝑓(𝑦; 𝑥)

Vertical slices are optimization problems
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