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Optimization is a powerful modeling tool

Continuous optimization expresses many non-trivial operations
Control, reinforcement learning, robotics, geometry (projections), variational inference, finance

(portfolio optimization), sparse coding, meta-learning, deep equilibrium networks, optimal transport,
game and market equilibrium
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Repeatedly solving optimization problems

Optimization problems often do not live in isolation and are often repeatedly solved in deployment

*

y*|(x) € argmin|f|(y;[)

/ NN

Optimal solution ||Optimization variable|| Objective ||Context

In control, [x is the system statey is the action,|f (y; x) is a cost,|and|y*(x) is an optimal action

p(z)
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Difficulty: optimization is computationally expensive

Sometimes solving just once may be difficult
Exasperated when repeatedly solving during deployment

Insight: optimal solutions share structure

Optimization problems share structure and don'’t live in isolation

Solution: amortized optimization

Use machine learning to uncover the shared structure
Create learning-augmented versions of classical optimization solvers
Far surpasses average or worst-case convergence rates

Also referred to as learning to optimize or data-driven optimization
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Amortized optimization

This talk: Explore foundations and applications v (x) € arg)r/ninf(y; X)
Amortization model y4(x) tries to approximate y*(x) w

Example: A neural network mapping from x to the solution y*(z)
Loss L measures how well ¥ fits y* and optimized with mein L(Jg) Yy

Example: L(J) = E,(x) 179 (x) — y* (0I5

X >
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Amortized optimization is well-explored

My goal: characterize and connect applications previously developed independently

Variational inference

Sparse coding

Meta-learning

Fixed-points and convex optimization

Optimal transport

Reinforcement learning

Brandon Amos

VAE —ELBO variational posterior data full Lob;
SAVAE/IVAE | | \ semi |
PSD reconstruction sparse code data full Lreg
LISTA | | | semi |
HyperNets task loss model parameters tasks full Lob;
LM | | | semi LI?bLj
MAML | | | | Lon]
Neural Potts  pseudo-likelihood | protein sequences full Lob;
NeuralFP FP residual FP iterates FP contexts semi L:Ebj
HyperAA | | | | z,
NeuralSCS CP residual CP iterates CP parameters | Egbj
HyperDEQ DEQ residual DEQ iterates DEQ parameters | Crzeg
NeuralNMF NMF residual factorizations input matrices | E?b»
RLQP Rriqp QP iterates QP parameters | [ZE‘S
AmorConj c-transform obj supp(«) supp(f) full Lob;
A-SW max-sliced dist slices © mini-batches | Lob;
Meta OT dual OT cost optimal couplings input measures | Lob;
BC/IL —Q-value controls state space full Lreg
(D)DPG,/TD3 | | | | Lo
PILCO | | | | Lov,
POPLIN | | | full or semi Lyeg
DCEM | | | semi Lyeg
IAPO | | | | Lov,
SVG Dg or —&g control dists | full Lobj
SAC | | | | Lobj
GPS | | | | Lk,
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This talk: amortized optimization

Design decisions
Modeling paradigms for yy (fully-amortized and semi-amortized models)
Learning paradigms for £ (objective-based and regression-based)

Selected applications
Reinforcement learning
Neural Potts Model for protein modeling
Meta optimal transport
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Modeling paradigms for y,

How to best-predict the solution?
Fully-amortized models: Map from the context x to the solution without accessing the objective f

Example: Neural network mapping from x to the solution
Most of our applications will focus on these

Semi-amortized models: Internally access the objective f
Example: Gradient-based meta-learning models such as MAML

gy — 95 — - — Up = Je(2)
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Learning paradigms for L

What should the model $4 optimize for?

Regression-based Objective-based:
Lreg(f’e) = IIEp(x) |79 (x) — y*(x)“% Lobj (Vo) = IIEp(x) f(@e(x); x)

Does not consider f(y;z)

Uses global information with y*(z)
Expensive to compute y*(x)

Does not compute V,, f(y; x)

Hard to learn non-unique y*(x)

Uses objective information of f(y;x)
Can get stuck in local optima of f(y;x)
Faster, does not require y*(x)

Often requires computing V,, f(y; x)
Easily learns non-unique y*(x)
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RL policy learning is amortized optimization

Setup: controlling a continuous MDP with a model-free policy 4 (x)

Review: Learning a policy with a value gradient amortizes over the Q-value:
argmax Ey () Q(x, g (1))

The amortization perspective easily enables expanding beyond this fully-amortized setting

Deterministic Policy Stochastic Policy
()
Q(x,u) Q(x,u) o ()
&
u u

p(z)
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Semi-amortized policy learning

Iterative Amortized Policy Optimization

334
Joseph Marino* Alexandre Piché
California Institute of Technology Mila, Université de Montréal
Alessandro Davide Ialongo Yisong Yue
University of Cambridge California Institute of Technology A 333
3
[
Abstract S

Policy networks are a central feature of deep reinforcement learning (RL) algo-

rithms for continuous control, enabling the estimation and sampling of high-value

actions. From the variational inference perspective on RL, policy networks, when . Direct Policy Network

used with entropy or KL regularization, are a form of amortized optimization, opti- : .

mizing network parameters rather than the policy distributions directly. However, Iterative Policy Network
Optimal Estimate

332

direct amortized mappings can yield suboptimal policy estimates and restricted 331

distributions, limiting performance and exploration. Given this perspective, we con-
sider the more flexible class of iterative amortized optimizers. We demonstrate that
the resulting technique, iterative amortized policy optimization, yields performance
improvements over direct amortization on benchmark continuous control tasks.
Accompanying code: github.com/joelouismarino/variational_rl.

330
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Decision-time fine-tuning and planning

Rely on standard policy methods such as PPO to amortize the solution to a game
Fine-tune at decision time by constraining to the initial state and continuing policy optimization

Scalable Online Planning
via Reinforcement Learning Fine-Tuning

Hanabi scores

Arnaud Fickinger* Hengyuan Hu* Brandon Amos
Facebook Al Research Facebook AI Research Facebook AI Research
arnaudfickinger@fb.com hengyuan@fb.com bda@fb.com

Stuart Russell
UC Berkeley
russell@berkeley.edu

Noam Brown
Facebook AI Research
noambrown@fb.com
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Variant Bl it SPARTA SPARTA RL Search RL Search
aran ueprin (Single) (Multi) (Single) (Multi)

Nommal 2423004 24.57+003 2461002 2459+002 2462+ 0.03
63.20% 73.90% 75.46% 75.05% 75.93%

o Hings 2299 +0.04 23.60+£0.03 23.67+0.03 2361 +003 2376 + 0.04
17.50% 25.85% 26.87% 27.85% 31.01%

Ms. Pacman scores

Additional Samples 0 3.10° 4.10° 8.10°

RL Fine-Tuning 1880 3940 4580 5510

PPO Training 1880 1900 1900 1920
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Amortization via learning latent subspaces

| Full control sequence space

Amortize the problem by learning a latent subspace of optimal solutions
Only search over optimal solutions rather than the entire space

( )
cost initial state dynamics constraints

Xir iy € argmin Y [Co(re, ue) st [¥a = Xinid [ees = foCee )] [ue € U

X1.TU1:T t

\_ J

Subspace of
optimal solutions

Cartpole videos Optimal controls over time — force on the cartpole
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Amortization via learning latent subspaces

CEM over the full action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

u* = argmin f(u)
u€lo,1]N

Controls
1

Full control sequence space

Timestep Timestep Timestep Timestep

DCEM over the latent action space
Iteration 0 Samples Iteration 3 Samples Iteration 6 Samples Iteration 9 Samples

Subspace of
optimal solutions

Controls

Timestep Timestep

Latent space
of optimal solutions

Latent Dim 2

Latent Dim 1 Latent Dim 1 Latent Dim 1 Latent Dim 1
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VAE amortization is conceptually the same as RL

Value gradient amortization in RL VAE posterior amortization
argglax Epx) Q(x,mg(x)) argmax [Ep ) ELBO(Ag (x); x)
6
| S A
B — RYcs a—
Uu U

images from dataset

x: states from system
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Neural Potts Model

Potts model: A Gibbs distribution over a protein sequence x:

—E(x) € z hi(x;) + Elij(xi;xj)
l palr]ameterized by W = {h,J}

Standard Potts (baseline) I
Independently optimize the likelihood for every sequence

—> Search & align|—|MSA || Optimize Potts model || W*

Neural Potts B
Amortize and jointly optimize for all sequences at once
IE} > NPM forward pass |—’ Wo(z)
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Lp,(W) Training objective

Generalization
Amortization gap L(W)  loss
"underfitting" 14 X

Inductive gain

\/ 'E' L(Wp)

1 :A >
w* Wy W7 W ={h,J}

Contact predictions
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ptimally transport between MNIST digits

)
L

N oo wog D e

Goal: optimally transport mass between measures a to 8

n*(a,B,c) € argminJ c(x,y)dm(x,y)
n€U(a,p) J X xY

Use amortization when repeatedly coupling measures
e.g., between pairs of images or physical transport

Often amortize over unconstrained dual potentials

b eq o] =D o0 O
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Meta OT for Sinkhorn

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)
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Discrete (Entropic)
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Error

Meta OT significantly improves Sinkhorn

MNIST Spherical

10 15 20 25 | 400 300
Sinkhorn Iterations Sinkhorn Iterations

M Sinkhorn M Meta OT + Sinkhorn
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Meta OT for Continuous OT with Meta ICNNs

X

Meta OT (I

N
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ResNety

ResNety
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Continuous (Wasserstein-2)
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More Meta OT color transfer predictions
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Future directions and limitations

Amortized optimization is established and budding with new methods and applications

Possible to expand far beyond unconstrained continuous Euclidean optimization settings:
1. New applications and settings for semi-amortized modeling

2. Constrained domains (e.g., with differentiable projections)

3. Discrete optimization settings (e.g., with differentiable discrete optimization)
4. Non-Euclidean settings (e.g., with Riemannian optimization)

Potential limitations:
1. Difficult in out-of-domain settings when the contexts significantly change
2. Generally difficult to ensure stability or convergence

3. Typically does not solve previously intractable problems
4. Can be difficult to obtain high-accuracy solutions without fine-tuning/semi-amortization
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The differentiable cross-entropy method [Amos and Yarats, ICML 2020]

Neural Potts Model [Sercu®, Verkuil”, et al., MLCB 2020]

On the model-based stochastic value gradient [Amos, Stanton, Yarats, Wilson, L4DC 2021]
Online planning via RL fine-tuning [Fickinger”, Hu*, et al., NeurlPS 2021]

Neural fixed-point acceleration [Venkataraman and Amos, ICML AutoML Workshop, 2021]
Meta Optimal Transport [Amos, Cohen, Luise, Redko, arXiv 2022]
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