
Tutorial on amortized optimization
Brandon Amos
Meta AI NYC, Fundamental AI Research (FAIR)

brandondamos bamos.github.io
Brandon Amos

� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos
� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8

Brandon Amos
� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos

� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8

github.com/facebookresearch/amortized-optimization-tutorial

Brandon Amos
� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos

� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8

Collaborators: Noam Brown, Caroline Chen, Samuel Cohen, Arnaud Fickinger, Hengyuan Hu, Yann LeCun, Zeming Lin, Jason Liu, Giulia
Luise, Joshua Meier, Ievgen Redko, Tom Sercu, Alexander Rives, Samuel Stanton, Shoba Venkataraman, Stuart Russel, Robert Verkuil,
Andrew Gordon Wilson, Denis Yarats

bamos.github.io
http://github.com/bamos/amortized-optimization-tutorial

Optimization is a powerful modeling tool

Brandon Amos Amortized optimization 2

Continuous optimization expresses many non-trivial operations
Control, reinforcement learning, robotics, geometry (projections), variational inference, finance
(portfolio optimization), sparse coding, meta-learning, deep equilibrium networks, optimal transport,
game and market equilibrium

Repeatedly solving optimization problems

Brandon Amos Amortized optimization 3

Optimization problems often do not live in isolation and are often repeatedly solved in deployment

𝑦⋆ 𝑥 ∈ argmin
"

𝑓(𝑦; 𝑥)

In control, 𝑥 is the system state, 𝑦 is the action, 𝑓 𝑦; 𝑥 is a cost, and 𝑦⋆(𝑥) is an optimal action

Optimal solution Optimization variable Objective Context

Difficulty: optimization is computationally expensive
Sometimes solving just once may be difficult
Exasperated when repeatedly solving during deployment

Brandon Amos Amortized optimization 4

Solution: amortized optimization
Use machine learning to uncover the shared structure
Create learning-augmented versions of classical optimization solvers
Far surpasses average or worst-case convergence rates

Also referred to as learning to optimize or data-driven optimization

Insight: optimal solutions share structure
Optimization problems share structure and don’t live in isolation

Amortized optimization

Brandon Amos Amortized optimization 5

This talk: Explore foundations and applications

Amortization model)𝑦"(𝑥) tries to approximate 𝑦⋆ 𝑥
Example: A neural network mapping from 𝑥 to the solution

Loss ℒ measures how well)𝑦 fits 𝑦⋆ and optimized with min
"
ℒ)𝑦"

Example: ℒ)𝑦" ≔ 𝔼#(%))𝑦" 𝑥 − 𝑦⋆ 𝑥 '
'

𝑦⋆ 𝑥 ∈ argmin
(

𝑓(𝑦; 𝑥)

My goal: characterize and connect applications previously developed independently

Amortized optimization is well-explored
Table 1: We tour the following applications of amortized optimization.

§ Application Objective f Domain Y Context Space X Amortization model ŷ✓ Loss L
6.1 VAE �ELBO variational posterior data full Lobj

SAVAE/IVAE | | | semi |

6.2 PSD reconstruction sparse code data full Lreg

LISTA | | | semi |

6.3 HyperNets task loss model parameters tasks full Lobj

LM | | | semi LRL
obj

MAML | | | | Lobj

Neural Potts pseudo-likelihood | protein sequences full Lobj

6.4 NeuralFP FP residual FP iterates FP contexts semi L⌃
obj

HyperAA | | | | L⌃
reg

NeuralSCS CP residual CP iterates CP parameters | L⌃
obj

HyperDEQ DEQ residual DEQ iterates DEQ parameters | L⌃
reg

NeuralNMF NMF residual factorizations input matrices | L⌃
obj

RLQP RRLQP QP iterates QP parameters | LRL
obj

6.5 AmorConj c-transform obj supp(↵) supp(�) full Lobj

A-SW max-sliced dist slices ⇥ mini-batches | Lobj

Meta OT dual OT cost optimal couplings input measures | Lobj

6.6 BC/IL �Q-value controls state space full Lreg

(D)DPG/TD3 | | | | Lobj

PILCO | | | | Lobj

POPLIN | | | full or semi Lreg

DCEM | | | semi Lreg

IAPO | | | | Lobj

SVG DQ or �EQ control dists | full Lobj

SAC | | | | Lobj

GPS | | | | LKL

7 synthetic sphere c-convex functions S2 ! R
3 RCPM parameters full Lobj

6. Review and tour of existing research that uses amortized optimization

We now take a review and tour of the key applications of amortized optimization to show
some unifying ideas that can be shared between all of these topics. Table 1 summarizes the
methods. The subsections in here are meant to be standalone and can be randomly accessed
and read in any order. I scope closely to providing the relevant context for just the amortized
optimization components and under-emphasize the remaining context of each research area.

Warning. Even though I try to provide the relevant background and notation to present
the amortized optimization components, each section is meant to be a review rather than an
introduction to these research topics. I defer further background to the original literature.

6.1 Amortized variational inference and variational autoencoders

Key ideas in amortized optimization originated in the variational inference (VI) community’s
interest in approximating intractable densities and integrals via optimization. We focus on
the relevant components of amortized variational inference (AVI) used in machine learning

23

Variational inference

Sparse coding

Meta-learning

Fixed-points and convex optimization

Optimal transport

Reinforcement learning

Brandon Amos Amortized optimization 6

This talk: amortized optimization
Design decisions

Modeling paradigms for)𝑦" (fully-amortized and semi-amortized models)
Learning paradigms for ℒ (objective-based and regression-based)

Selected applications
Reinforcement learning
Neural Potts Model for protein modeling
Meta optimal transport

Brandon Amos Amortized optimization 7

This talk: amortized optimization
Design decisions

Modeling paradigms for)𝑦" (fully-amortized and semi-amortized models)
Learning paradigms for ℒ (objective-based and regression-based)

Selected applications
Reinforcement learning
Neural Potts Model for protein modeling
Meta optimal transport

Brandon Amos Amortized optimization 8

Modeling paradigms for !𝑦!
Fully-amortized models: Map from the context 𝑥 to the solution without accessing the objective 𝑓
Example: Neural network mapping from 𝑥 to the solution
Most of our applications will focus on these

Semi-amortized models: Internally access the objective 𝑓
Example: Gradient-based meta-learning models such as MAML

Brandon Amos Amortized optimization 9

and the context distribution isn’t too large. When fully-amortized models don’t work well,
we open up the black box and turn to semi-amortized models.

3.2 Semi-amortized models

Definition 3 A semi-amortized model ŷ✓ : X ! Y maps the context to the solution of the
optimization problem and accesses the objective f of eq. (1), typically iteratively.

Kim et al. (2018); Marino et al. (2018) proposed semi-amortized models for variational
inference that add back domain knowledge of the optimization problem to the model ŷ✓
that the fully-amortized models do not use. The model itself can now internally integrates
solvers to improve the prediction. Semi-amortized methods are typically iterative and update
iterates in the domain Y or in an auxiliary or latent space Z. We refer to the space the
semi-amortization iterates over as the amortization space and denote iterate t in these spaces,
respectively, as ŷ

t

✓
and z

t

✓
. While the iterates and final prediction ŷ✓ can now query the

objective f and gradient ryf , we notationally leave this dependence implicit for brevity and
only reference these queries in the relevant definitions.

3.2.1 Semi-amortized models over the domain Y

ŷ
0
✓

ŷ
1
✓

. . . ŷ
K

✓
=: ŷ✓(x)

One of the most common semi-amortized model is to parameterize and integrate an
optimization procedure used to solve eq. (1) into the model ŷ✓, such as gradient descent
(Andrychowicz et al., 2016; Finn et al., 2017; Kim et al., 2018). We emphasize that this
optimization procedure is an internal part of the amortization model ŷ✓, often referred to as
the inner-level optimization problem in the bi-level setting that arises for learning.

Examples. We now instantiate a canonical semi-amortized model based gradient descent
that learns the initialization as in model-agnostic meta-learning (MAML) by Finn et al.
(2017), structured prediction energy networks (SPENs) by Belanger et al. (2017), and semi-
amortized variational auto-encoders (SAVAEs) by Kim et al. (2018). The initial iterate
ŷ
0
✓
(x) := ✓ is parameterized by ✓ 2 X for all contexts. We then use the knowledge of the

objective f(y;x) for a given context x and iteratively update

ŷ
t

✓
:= ŷ

t�1
✓

� ↵ryf(ŷ
t�1
✓

;x) t 2 {1 . . . ,K} (2)

for K steps with a learning rate ↵ 2 R+ and set the model’s output to be ŷ✓ := ŷ
K .

Semi-amortized models over the domain can go significantly beyond gradient-based models
and in theory, any algorithm to solve the original optimization problem in eq. (1) can be
integrated into the model. We will further discuss the learning of semi-amortized models by
unrolling in section 4.2.1 and will then later see many other instantiations of it:

• Section 6.2 discusses how Gregor and LeCun (2010) integrate ISTA iterates (Daubechies
et al., 2004; Beck and Teboulle, 2009) into a semi-amortized model.

• Section 6.4.1 discusses models that integrate fixed-point computations into semi-
amortized models. Venkataraman and Amos (2021) amortize convex cone programs
by differentiating through the splitting cone solver (O’donoghue et al., 2016) and Bai
et al. (2022) amortize deep equilibrium models (Bai et al., 2019, 2020).

6

How to best-predict the solution?

Learning paradigms for ℒ
Regression-based
ℒreg)𝑦" ≔ 𝔼#(%))𝑦" 𝑥 − 𝑦⋆ 𝑥 '

'

Brandon Amos Amortized optimization 10

Regression-based losses Lreg

� Does not consider f(y;x)

+ Uses global information with y
?
(x)

� Expensive to compute y
?
(x)

+ Does not compute ryf(y;x)

� Hard to learn non-unique y
?
(x)

Objective-based losses Lobj

+ Uses objective information of f(y;x)
� Can get stuck in local optima of f(y;x)
+ Faster, does not require y

?
(x)

� Often requires computing ryf(y;x)

+ Easily learns non-unique y
?
(x)

4.2 Learning iterative semi-amortized models

Fully-amortized or semi-amortized models can be learned with the regression- and objective-
based losses. Here we discuss how the loss can be further opened up and crafted to
learn iterative semi-amortized methods. For example, if the model produces intermediate
predictions ŷ

i

✓
in every iteration i, instead of optimizing the loss of just the final prediction,

i.e. L(ŷK
✓
), we can consider more generally variants of the losses that we will denote as L⌃

that consider the impact of every iteration of the model’s prediction

argmin
✓

L⌃
(ŷ✓) L⌃

(ŷ✓) :=

KX

i=0

wiL(ŷi✓), (13)

where wi 2 R+ are weights in every iteration i that give a design choice of how important
it is for the earlier iterations to produce reasonable solutions. For example, setting wi = 1

encourages every iterate to be low.
Learning iterative semi-amortized methods also has connections to sequence learning

models that arise in, e.g. text, audio, and language processing. Given the context x, an
iterative semi-amortized model seeks to produce a sequence of predictions that ultimately
result in the intermediate and final predictions, which can be analogous to a language model
predicting future text given the previous text as context. We next discuss concepts that arise
when computing the derivatives of a loss with respect to the model’s parameters.

4.2.1 Unrolled optimization and backpropagation through time

ẑ
0
✓

ẑ
1
✓

. . . ẑ
K

✓
ŷ✓(x) L

. . .

The parameterization of every iterate z
i

✓
can influence the final prediction ŷ✓ and thus

losses on top of ŷ✓ need to consider the entire chain of computations. Differentiating through
an iterative procedure such as this is referred to as backpropagation through time in sequence
models and unrolled optimization (Pearlmutter and Siskind, 2008; Zhang and Lesser, 2010;
Maclaurin et al., 2015a; Belanger and McCallum, 2016; Metz et al., 2016; Finn et al., 2017;
Han et al., 2017; Belanger et al., 2017; Belanger, 2017; Foerster et al., 2017; Bhardwaj et al.,
2020; Monga et al., 2021) when the iterates are solving an optimization problem as the model
computation is iterative and computing D✓[ŷ✓(x)] requires saving and differentiating the
“unrolled” intermediate iterations, as we saw in section 3.2.4. The terminology “unrolling”
here emphasizes that the iterative computation produces a compute graph of operations and
is likely inspired from loop unrolling in compiler optimization (Aho et al., 1986; Davidson
and Jinturkar, 1995) where loop operations are inlined for efficiency and written as a single
chain of repeated operations rather than an iterative computation of a single operation.

12

Objective-based:
ℒobj)𝑦" ≔ 𝔼# % 𝑓()𝑦" 𝑥 ; 𝑥)Regression-based losses Lreg

� Does not consider f(y;x)

+ Uses global information with y
?
(x)

� Expensive to compute y
?
(x)

+ Does not compute ryf(y;x)

� Hard to learn non-unique y
?
(x)

Objective-based losses Lobj

+ Uses objective information of f(y;x)
� Can get stuck in local optima of f(y;x)
+ Faster, does not require y

?
(x)

� Often requires computing ryf(y;x)

+ Easily learns non-unique y
?
(x)

4.2 Learning iterative semi-amortized models

Fully-amortized or semi-amortized models can be learned with the regression- and objective-
based losses. Here we discuss how the loss can be further opened up and crafted to
learn iterative semi-amortized methods. For example, if the model produces intermediate
predictions ŷ

i

✓
in every iteration i, instead of optimizing the loss of just the final prediction,

i.e. L(ŷK
✓
), we can consider more generally variants of the losses that we will denote as L⌃

that consider the impact of every iteration of the model’s prediction

argmin
✓

L⌃
(ŷ✓) L⌃

(ŷ✓) :=

KX

i=0

wiL(ŷi✓), (13)

where wi 2 R+ are weights in every iteration i that give a design choice of how important
it is for the earlier iterations to produce reasonable solutions. For example, setting wi = 1

encourages every iterate to be low.
Learning iterative semi-amortized methods also has connections to sequence learning

models that arise in, e.g. text, audio, and language processing. Given the context x, an
iterative semi-amortized model seeks to produce a sequence of predictions that ultimately
result in the intermediate and final predictions, which can be analogous to a language model
predicting future text given the previous text as context. We next discuss concepts that arise
when computing the derivatives of a loss with respect to the model’s parameters.

4.2.1 Unrolled optimization and backpropagation through time

ẑ
0
✓

ẑ
1
✓

. . . ẑ
K

✓
ŷ✓(x) L

. . .

The parameterization of every iterate z
i

✓
can influence the final prediction ŷ✓ and thus

losses on top of ŷ✓ need to consider the entire chain of computations. Differentiating through
an iterative procedure such as this is referred to as backpropagation through time in sequence
models and unrolled optimization (Pearlmutter and Siskind, 2008; Zhang and Lesser, 2010;
Maclaurin et al., 2015a; Belanger and McCallum, 2016; Metz et al., 2016; Finn et al., 2017;
Han et al., 2017; Belanger et al., 2017; Belanger, 2017; Foerster et al., 2017; Bhardwaj et al.,
2020; Monga et al., 2021) when the iterates are solving an optimization problem as the model
computation is iterative and computing D✓[ŷ✓(x)] requires saving and differentiating the
“unrolled” intermediate iterations, as we saw in section 3.2.4. The terminology “unrolling”
here emphasizes that the iterative computation produces a compute graph of operations and
is likely inspired from loop unrolling in compiler optimization (Aho et al., 1986; Davidson
and Jinturkar, 1995) where loop operations are inlined for efficiency and written as a single
chain of repeated operations rather than an iterative computation of a single operation.

12

What should the model !𝑦! optimize for?

This talk: amortized optimization
Design decisions

Modeling paradigms for)𝑦" (fully-amortized and semi-amortized models)
Learning paradigms for ℒ (objective-based and regression-based)

Selected applications
Reinforcement learning
Neural Potts Model for protein modeling
Meta optimal transport

Brandon Amos Amortized optimization 11

RL policy learning is amortized optimization
Setup: controlling a continuous MDP with a model-free policy 𝜋" 𝑥

Review: Learning a policy with a value gradient amortizes over the 𝑄-value:
argmax

"
𝔼# % 𝑄(𝑥, 𝜋" 𝑥)

The amortization perspective easily enables expanding beyond this fully-amortized setting

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

Figure 10: Many policy learning methods amortize optimization problem over the Q-values.
Given a fixed input state x, the policy ⇡✓(x) predicts the maximum value ⇡

?
(x). A stochastic

policy predicts a distribution that minimizes some probabilistic distance to the Q-distribution,
such as the expected value or KL.

6.4.5 RLQP by Ichnowski et al. (2021)

RLQP (Ichnowski et al., 2021) amortizes solutions to constrained convex quadratic optimiza-
tion problems of the form

x
?
(�) 2 argmin

x

1

2
x
>
Px+ q

>
x subject to l  Ax  u, (57)

where x 2 R
n is the domain of the optimization problem and � = {P, q, l, A, u} is the context

or parameterization (from a larger space � 2 �) of the optimization problem with P � 0

(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
the core of OSQP uses updates that first solve the system


P + �I A

>

A �diag(⇢
t
)
�1

� 
x
t+1

v
t+1

�
=


�x

t � q

z
t � diag(⇢

t
)
�1

y
t

�
(58)

and then updates
z̃
t+1

:= z
t
+ diag(⇢

t
)
�1

(v
t+1 � y

t
)

z
t+1

:= ⇧
�
z̃
t+1

+ diag(⇢
t
)
�1

y
t
�

y
t+1

:= x
t
+ diag(⇢)

�
z̃
t+1 � zt+ 1

�
,

(59)

where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s

t
, ⇢

t
).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.

32

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

Figure 10: Many policy learning methods amortize optimization problem over the Q-values.
Given a fixed input state x, the policy ⇡✓(x) predicts the maximum value ⇡

?
(x). A stochastic

policy predicts a distribution that minimizes some probabilistic distance to the Q-distribution,
such as the expected value or KL.

6.4.5 RLQP by Ichnowski et al. (2021)

RLQP (Ichnowski et al., 2021) amortizes solutions to constrained convex quadratic optimiza-
tion problems of the form

x
?
(�) 2 argmin

x

1

2
x
>
Px+ q

>
x subject to l  Ax  u, (57)

where x 2 R
n is the domain of the optimization problem and � = {P, q, l, A, u} is the context

or parameterization (from a larger space � 2 �) of the optimization problem with P � 0

(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
the core of OSQP uses updates that first solve the system


P + �I A

>

A �diag(⇢
t
)
�1

� 
x
t+1

v
t+1

�
=


�x

t � q

z
t � diag(⇢

t
)
�1

y
t

�
(58)

and then updates
z̃
t+1

:= z
t
+ diag(⇢

t
)
�1

(v
t+1 � y

t
)

z
t+1

:= ⇧
�
z̃
t+1

+ diag(⇢
t
)
�1

y
t
�

y
t+1

:= x
t
+ diag(⇢)

�
z̃
t+1 � zt+ 1

�
,

(59)

where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s

t
, ⇢

t
).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.

32

Semi-amortized policy learning

Brandon Amos Amortized optimization 13

Decision-time fine-tuning and planning
Rely on standard policy methods such as PPO to amortize the solution to a game
Fine-tune at decision time by constraining to the initial state and continuing policy optimization

Brandon Amos Amortized optimization 14

Ms. Pacman scores

Scalable Online Planning
via Reinforcement Learning Fine-Tuning

Arnaud Fickinger∗
Facebook AI Research

arnaudfickinger@fb.com

Hengyuan Hu∗

Facebook AI Research
hengyuan@fb.com

Brandon Amos
Facebook AI Research

bda@fb.com

Stuart Russell
UC Berkeley

russell@berkeley.edu

Noam Brown
Facebook AI Research
noambrown@fb.com

Abstract

Lookahead search has been a critical component of recent AI successes, such as
in the games of chess, go, and poker. However, the search methods used in these
games, and in many other settings, are tabular. Tabular search methods do not
scale well with the size of the search space, and this problem is exacerbated by
stochasticity and partial observability. In this work we replace tabular search with
online model-based fine-tuning of a policy neural network via reinforcement learn-
ing, and show that this approach outperforms state-of-the-art search algorithms in
benchmark settings. In particular, we use our search algorithm to achieve a new
state-of-the-art result in self-play Hanabi, and show the generality of our algorithm
by also showing that it outperforms tabular search in the Atari game Ms. Pacman.

1 Introduction

Lookahead search has been a key component of successful AI systems in sequential decision-making
problems. For example, in order to achieve superhuman performance in go, chess and shogi, Alp-
haZero leveraged Monte Carlo tree search (MCTS) [38]. MuZero extended this even further to Atari
games, again using MCTS [32]. Without MCTS, AlphaZero performs below a top human level,
and more generally no superhuman Go bot has yet been developed that does not use some form of
MCTS. Similarly, search algorithms were a critical component of AI successes in backgammon [45],
chess [10], poker [27, 7, 8], and Hanabi [22]. However, even though different search algorithms were
used in each domain, all of them were tabular search algorithms, i.e., a distinct policy was computed
for each state encountered during search, without any function approximation to generalize between
similar states.

While tabular search has achieved great success, particularly in perfect-information deterministic
environments, its applicability is clearly limited. For example, in the popular partially observ-
able stochastic AI benchmark game Hanabi [5], one-step lookahead search involves a search over
about 500 possible next states. However, searching over all two-step joint policies would require a
search over 2020 states, which is clearly intractable for tabular search. Additionally, unlike perfect-
information deterministic games where it is only necessary to search over a tiny fraction of the next
several moves, partial observability and stochasticity make it impossible to limit the search to a tiny
subset of all possible states. Fortunately, many of these states are extremely similar, so a search
algorithm can in theory benefit by generalizing between similar states. This is the motivation for our
non-tabular search algorithm.

∗Equal Contribution.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Variant Blueprint SPARTA SPARTA RL Search RL Search
(Single) (Multi) (Single) (Multi)

Normal 24.23 ± 0.04 24.57 ± 0.03 24.61 ± 0.02 24.59 ± 0.02 24.62 ± 0.03
63.20% 73.90% 75.46% 75.05% 75.93%

2 Hints 22.99 ± 0.04 23.60 ± 0.03 23.67 ± 0.03 23.61 ± 0.03 23.76 ± 0.04
17.50% 25.85% 26.87% 27.85% 31.01%

Table 1: Performance on Hanabi. Each cell is averaged over 2000 games. The number in the upper half of
the cell is the average score ± standard error of mean (s.e.m.) and the number in the lower half is the percentage
of winning games where agents score 25 points.

4.2 Atari

We demonstrate the generality of our approach by comparing policy gradient fine-tuning to MCTS
in two Atari environments, Ms. Pacman and Space Invaders [6]. Specifically, we aim to answer the
following questions:

1. Does RL Fine-Tuning outperforms MCTS in terms of search time and sample complexity?
Yes, RL Fine-Tuning obtains higher scores in Ms.Pacman than MCTS for a smaller search
time budget and a smaller number of samples per step.

2. Does RL Fine-Tuning performs well even with a weak blueprint? Yes, RL Fine-Tuning
obtains strong results with a weak blueprint in Ms.Pacman and improve the policy in a
much more sample-efficient way than carrying the PPO training of the weak policy.

3. Are the optimal hyperameters robust across different environments? Yes, an ablation study
on the search horizon hyperparameter reveals that the optimal search horizon is the same
for Ms. Pacman and Space Invaders.

4.2.1 Implementation

Blueprint Training. We train a PPO [34] agent until convergence in Ms. Pacman and Space In-
vaders. In both cases 107 samples are necessary to converge to the optimal PPO blueprint. We also
save a weak blueprint after 2.106 samples in Ms.Pacman to answer question 2. The weak blueprint
obtains a score that is 5 times smaller than the optimal PPO policy.

MCTS. At every testing time step, we build a tree starting from the current state. We use the
blueprint policy to guide the action selection during the tree traversal and we use the value network
every time we reach a node never seen before or we reach the depth limit of the tree. In our ex-
periments we use a depth limit of 100. We can significantly improve the performance of MCTS by
allowing for an additional hyperparameter to balance policy prior and visitation counts in the second
term:

argmax
a

Q(s, a) + c · πθ(a|x)β ·
√∑

a′ N(s, a′)

1 +N(s, a)
(8)

We obtain the best performance with c = 5 and β = 0.1.

Policy Gradient Fine-Tuning. Our method achieves a small average time budget by amortizing the
search time across multiple steps. In Ms. Pacman, we solve a finite-horizon problem of horizon 30
and we only need to replan every 30 steps (Algorithm 2). We have also tried to amortize MCTS
across multiple steps, where we update the tree only after 30 steps. In this setting however, the
episode return is worse than what is achieved by the blueprint, emphasizing the need to replan at
every timestep, which is not necessary when performing RL search. To optimize an infinite-horizon
problem rather than a finite-horizon problem, we can use the refined value instead of the blueprint
for the last step of each trajectory. The problem is still simplified due to the biased initial state
distribution. In Ms. Pacman, we have observed that this setting leads to similar improvements.

4.2.2 Results

RL Fine-Tuning outperforms MCTS for a fixed search time budget. Both MCTS and policy
gradient fine-tuning are multi-step improvement operators that optimize objective (4) using a value

7

(a) Time Budget (b) Samples

Figure 1: MCTS vs RL Fine-Tuning. (a)When the average time budget is on the order of 1-10
seconds, RL Fine-Tuning consistently outperforms MCTS. (b)RL Fine-Tuning also outperforms
MCTS in terms of sample efficiency. The shaded area represent the min/max range across 5 seeds.
The curves are smoothed with an exponential moving average.

Additional Samples 0 3.105 4.105 8.105

RL Fine-Tuning 1880 3940 4580 5510
PPO Training 1880 1900 1900 1920

Table 2: Performance on Ms. Pacman with a weak blueprint. It is more sample efficient to use RL Fine-
Tuning to improve a weak blueprint rather than carrying on the PPO training.

estimate to truncate the objective. Therefore we expect both methods to achieve the same asymptotic
performance. We compare both methods with a finite time budget of the order of 10s. Figure 1 shows
the return achieved by the agent when performing either MCTS or RL search at action selection
time, versus the average search time budget. We see that RL search consistently outperforms MCTS,
contrasting with recent work showing that policy gradient was worse than MCTS for planning in the
game Hex [3]. The difference of performance with this previous work might be due to the fact that
they are using vanilla PG while we are using PPO.

RL Fine-Tuning is more sample efficient than MCTS. With RL search, we need an average of
621 samples and 1.2 seconds per step to achieve a return of 8080 which is more than 2 times the
return achieved by our asymptotic PPO policy. The total number of additional samples needed is
502,000, which is less than 5% of the samples needed for the blueprint PPO policy to converge. In
contrast, MCTS requires an average of 4489 samples per step to reach a cumulative reward of 5820.

RL Fine-Tuning obtains strong results even with a weak blueprint. We run experiments in
the Ms. Pacman environment using poorer blueprints and compare the average cumulative reward
obtained by continuing the PPO training versus performing RL Fine-Tuning for the same number
of additional samples. For a blueprint trained during 2000 epochs of 1024 samples (around 1/5
of convergence and obtaining an average cumulative reward of 1880), RL fine-tuning can reach
an average cumulative reward of 5510 with an online search using on average 1145 samples per
step. In contrast, continuing the PPO training of the blueprint using the same number of additional
samples used by RL fine-tuning yields a policy that reach an average cumulative reward of 1920 only
(see table 2). We also test a randomly initialized blueprint: RL fine-tuning can reach an average
cumulative reward of 2730 with an online search using on average 1360 samples per step while
the PPO training of this blueprint with the same number of additional samples yields an average
cumulative reward of 1280 only (see table 3).

The hyperparamters of RL Fine-Tuning are robust across different environments. After per-
forming the same ablation study on the horizon in both Ms. Pacman and Space Invaders, we have
found that the optimal horizon is 32 for both environments. Thus there is reason to think that this
value is nearly optimal in several other Atari games and readers willing to apply our method to other
Atari games should start experimenting with this value.

8

Hanabi scores

Amortization via learning latent subspaces
Amortize the problem by learning a latent subspace of optimal solutions
Only search over optimal solutions rather than the entire space

Optimal controls over time — force on the cartpole

Time

Full control sequence space

Subspace of
optimal solutions

Cartpole videos

𝑥):+⋆ , 𝑢):+⋆ ∈ argmin
%!:#,-!:#

>
.

𝐶" 𝑥., 𝑢. s.t. 𝑥) = 𝑥init 𝑥./) = 𝑓" 𝑥., 𝑢. 𝑢. ∈ 𝒰
cost dynamics constraintsinitial state

Amortization via learning latent subspaces

Brandon Amos Amortized optimization 16

Full control sequence space

Subspace of
optimal solutions

𝑢⋆ = argmin
$∈ &,(!

𝑓 𝑢

Latent space
of optimal solutions

VAE amortization is conceptually the same as RL

Brandon Amos Amortized optimization 17

VAE posterior amortization

argmax
"

𝔼#(%) ELBO(I𝜆"(𝑥); 𝑥)

Value gradient amortization in RL

argmax
"

𝔼# % 𝑄(𝑥, 𝜋" 𝑥)

u
º?(x) ºµ(x)

Q(x, u)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

Figure 10: Many policy learning methods amortize optimization problem over the Q-values.
Given a fixed input state x, the policy ⇡✓(x) predicts the maximum value ⇡

?
(x). A stochastic

policy predicts a distribution that minimizes some probabilistic distance to the Q-distribution,
such as the expected value or KL.

6.4.5 RLQP by Ichnowski et al. (2021)

RLQP (Ichnowski et al., 2021) amortizes solutions to constrained convex quadratic optimiza-
tion problems of the form

x
?
(�) 2 argmin

x

1

2
x
>
Px+ q

>
x subject to l  Ax  u, (57)

where x 2 R
n is the domain of the optimization problem and � = {P, q, l, A, u} is the context

or parameterization (from a larger space � 2 �) of the optimization problem with P � 0

(symmetric positive semi-definite). They build on the OSQP solver (Stellato et al., 2018) for
these optimization problems, which is based on operator splitting. Without over-relaxation,
the core of OSQP uses updates that first solve the system


P + �I A

>

A �diag(⇢
t
)
�1

� 
x
t+1

v
t+1

�
=


�x

t � q

z
t � diag(⇢

t
)
�1

y
t

�
(58)

and then updates
z̃
t+1

:= z
t
+ diag(⇢

t
)
�1

(v
t+1 � y

t
)

z
t+1

:= ⇧
�
z̃
t+1

+ diag(⇢
t
)
�1

y
t
�

y
t+1

:= x
t
+ diag(⇢)

�
z̃
t+1 � zt+ 1

�
,

(59)

where y, v are dual variables, z, z̃ are auxiliary operator splitting variables, � is a regularization
parameter, and ⇢

t 2 R
m
+ is a step-size parameter. We combine all of the variables into a state

s := (y,�, z̃, z) living in s 2 S and write the update as s
t+1 := OSQP_UPDATE(s

t
, ⇢

t
).

RLQP proposes to use these OSQP iterates as a semi-amortized model with the iterates
{st, ⇢t}. The propose to only parameterize and learn to predict the step size ⇢

t+1 := ⇡✓(s
t
),

with a neural network amortization model ⇡✓. They model the process of predicting the
optimal ⇢ as an MDP and define a reward RRLQP(s, ⇢) that is �1 if the QP is not solved
(based on thresholds of the primal and dual residuals) and 0 otherwise, i.e. each episode
rolls out the OSQP iterations with a policy predicting the optimal step size. They solve this
MDP with TD3 by Fujimoto et al. (2018) to find the parameters ✓.

Summary. ARLQP := (RRLQP,S ⇥ R
m
+ ,�, p(�),⇡✓,LRL

obj)

6.5 Amortized policy learning for control and reinforcement learning

Many control and reinforcement learning methods amortize the solutions to a control
optimization problem as illustrated in figs. 2 and 10.

32

u
∏?(x) ∏̂µ(x)

ELBO(∏; x)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

𝑥: images from dataset𝑥: states from system

𝑥" 𝑥# 𝑥$

This talk: amortized optimization
Design decisions

Modeling paradigms for)𝑦" (fully-amortized and semi-amortized models)
Learning paradigms for ℒ (objective-based and regression-based)

Selected applications
Reinforcement learning
Neural Potts Model for protein modeling
Meta optimal transport

Brandon Amos Amortized optimization 18

Neural Potts Model
Potts model: A Gibbs distribution over a protein sequence 𝑥:

−𝐸 𝑥 ≝>
0

ℎ0 𝑥0 +>
01

𝐽01 𝑥0, 𝑥1

Standard Potts (baseline)
Independently optimize the likelihood for every sequence

Neural Potts
Amortize and jointly optimize for all sequences at once

Brandon Amos Amortized optimization 19

Appeared at MLCB 2020

Amortization gap
"underfitting"

Inductive gain

<latexit sha1_base64="edomf7QtD1KHyPfwYglFTbMHSdA=">AAACBHicbVC7TsMwFHV4lvAqMLJEVEiIIUoQiI6VWBiLoA+pDZXjOK1VPyLbQVRRVzZW+Ak2xMp/8A98BE6aAVqOZOnonHvs6xMmlCjteV/W0vLK6tp6ZcPe3Nre2a3u7beVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74fgq9zsPWCoi+J2eJDhgcMhJTBDURrrt3J8OqjXP9Qo4i8QvSQ2UaA6q3/1IoJRhrhGFSvV8L9FBBqUmiOKp3U8VTiAawyHuGcohwyrIilWnzrFRIicW0hyunUL9ncggU2rCQjPJoB6peS8X//N6qY7rQUZ4kmrM0eyhOKWOFk7+byciEiNNJ4ZAJInZ1UEjKCHSph27XwSz/NoBEoxBHilX48epberx58tYJO0z179wvZvzWqNeFlUBh+AInAAfXIIGuAZN0AIIDMEzeAGv1pP1Zr1bH7PRJavMHIA/sD5/AFT1mHU=</latexit>

W ⇤
<latexit sha1_base64="x7dxv8yiwoVk03e7KK2Gsvf6YBU=">AAACCnicbVBLTsMwFHT4lvIrsGQTUSEhFlGCQHRZiQ3LItEPakPluE5r1XYi+wVRRbkBO7ZwCXaILZfgDhwCJ+0CWkayNJp5Yz9PEHOmwXW/rKXlldW19dJGeXNre2e3srff0lGiCG2SiEeqE2BNOZO0CQw47cSKYhFw2g7GV7nffqBKs0jewiSmvsBDyUJGMBjprjfCkLaz+9N+peo6bgF7kXgzUkUzNPqV794gIomgEgjHWnc9NwY/xQoY4TQr9xJNY0zGeEi7hkosqPbTYuHMPjbKwA4jZY4Eu1B/J1IstJ6IwEwKDCM97+Xif143gbDmp0zGCVBJpg+FCbchsvPf2wOmKAE+MQQTxcyuNhlhhQmYjsq9Ipjm1/ZJJASWA+0AfczKph5vvoxF0jpzvAvHvTmv1muzokroEB2hE+ShS1RH16iBmogggZ7RC3q1nqw36936mI4uWbPMAfoD6/MHZ2ebQg==</latexit>

Ŵ ⇤<latexit sha1_base64="nW+uf+2KuNE6pzZlOP/ex93oPw8=">AAACDnicbVDLSgMxFM34rPVVdelmsAh1U2ZEscuCG5cV7AM6Q8mkt21okhmTO2IZ+g/u3OpPuBO3/oL/4EeYPhbaeiBwOOeem8uJEsENet6Xs7K6tr6xmdvKb+/s7u0XDg4bJk41gzqLRaxbETUguII6chTQSjRQGQloRsPrid98AG14rO5wlEAoaV/xHmcUrRQ2OwEOAGkpeHg86xSKXtmbwl0m/pwUyRy1TuE76MYslaCQCWpM2/cSDDOqkTMB43yQGkgoG9I+tC1VVIIJs+nRY/fUKl23F2v7FLpT9Xcio9KYkYzspKQ4MIveRPzPa6fYq4QZV0mKoNjso14qXIzdSQNul2tgKEaWUKa5vdVlA6opQ9tTPpgGs8naDoulpKprygiP47ytx18sY5k0zsv+Zdm7vShWK/OicuSYnJAS8ckVqZIbUiN1wsg9eSYv5NV5ct6cd+djNrrizDNH5A+czx8vFJy9</latexit>

W✓(x)

<latexit sha1_base64="OT8U1owHW6bFe4Tgl1XDaUGFSUI=">AAACDnicbVDLSsNAFJ34rPVVdekmWATdlEQUuyy4ceGigrVCE8JkctsOzkzizI1YQv/BnVv9CXfi1l/wH/wIJ7ULXwcGDufcc+dy4kxwg5737szMzs0vLFaWqssrq2vrtY3NS5PmmkGHpSLVVzE1ILiCDnIUcJVpoDIW0I2vT0q/ewva8FRd4CiDUNKB4n3OKFopDAZne90owCEg3Y9qda/hTeD+Jf6U1MkU7aj2ESQpyyUoZIIa0/O9DMOCauRMwLga5AYyyq7pAHqWKirBhMXk6LG7a5XE7afaPoXuRP2eKKg0ZiRjOykpDs1vrxT/83o59pthwVWWIyj29VE/Fy6mbtmAm3ANDMXIEso0t7e6bEg1ZWh7qgaTYFGujVgqJVWJaSDcjau2Hv93GX/J5UHDP2p454f1VnNaVIVskx2yR3xyTFrklLRJhzByQx7II3ly7p1n58V5/RqdcaaZLfIDztsnzQCcgg==</latexit>

L(W✓)

<latexit sha1_base64="LeDXniACslwhhOgm/Cv0dZYQTxo=">AAACD3icbVDLSgMxFM3UV62vqks3g0WoLsqMKHZZcOPCRQX7gM60ZNK0DU0yQ3JHLEM/wp1b/Ql34tZP8B/8CDPtLLT1QOBwzj03lxNEnGlwnC8rt7K6tr6R3yxsbe/s7hX3D5o6jBWhDRLyULUDrClnkjaAAaftSFEsAk5bwfg69VsPVGkWynuYRNQXeCjZgBEMRup6w9uyN8KQtKbds9NeseRUnBnsZeJmpIQy1HvFb68fklhQCYRjrTuuE4GfYAWMcDoteLGmESZjPKQdQyUWVPvJ7OqpfWKUvj0IlXkS7Jn6O5FgofVEBGZSYBjpRS8V//M6MQyqfsJkFAOVZP7RIOY2hHZagd1nihLgE0MwUczcapMRVpiAKargzYJJurZHQiGw7OsK0MdpwdTjLpaxTJrnFfey4txdlGrVrKg8OkLHqIxcdIVq6AbVUQMRpNAzekGv1pP1Zr1bH/PRnJVlDtEfWJ8/a/Kc1A==</latexit>

L(Ŵ ⇤)

Generalization
loss

Training objective
<latexit sha1_base64="3bJEeqQbd3Wc3RoBclyIyKuyxA0=">AAACGXicdVDLSiNBFK3WcXQyD6OCGzeFYSCzaarzMFkG3LhwkQFjAunQVFcqSWFVdVN1Wwxtf4k7t/oT7sStK/9hPmIqMQMz4hwoOJxzz63LiVMpLBDy4q2tf9j4uLn1qfT5y9dv2+Wd3XObZIbxHktkYgYxtVwKzXsgQPJBajhVseT9+OJ44fcvubEi0WcwT/lI0akWE8EoOCkq74czCnk4PS2iPDQq754WRbX/IypXiE+aQa0WYOLXW62jRs0REpBGvY4DnyxRQSt0o/KvcJywTHENTFJrhwFJYZRTA4JJXpTCzPKUsgs65UNHNVXcjvLl/QX+7pQxniTGPQ14qf6dyKmydq5iN6kozOxbbyG+5w0zmLRHudBpBlyz148mmcSQ4EUZeCwMZyDnjlBmhLsVsxk1lIGrrBQug/libcQSpageWx/4VVFy9fzpAP+fnNf8oOmTn41Kp70qagsdoENURQFqoQ46QV3UQwxdo1t0h+69G+/Be/SeXkfXvFVmD/0D7/k3dkuhJg==</latexit>

L̂PL(W)

<latexit sha1_base64="4v62por1vpMmB7i8aAywecAlHDY=">AAACB3icbVC9TsMwGHTKXwl/BUaWiAqpLFGCQHSsxMLAUCT6IzVR5ThOa2o7ke0gqqgPwMYKL8GGWHkM3oGHwEkzQMtJlk5339mfL0gokcpxvozKyura+kZ109za3tndq+0fdGWcCoQ7KKax6AdQYko47iiiKO4nAkMWUNwLJle533vAQpKY36lpgn0GR5xEBEGlpa43umn0Toe1umM7Baxl4pakDkq0h7VvL4xRyjBXiEIpB66TKD+DQhFE8cz0UokTiCZwhAeacsiw9LNi25l1opXQimKhD1dWof5OZJBJOWWBnmRQjeWil4v/eYNURU0/IzxJFeZo/lCUUkvFVv51KyQCI0WnmkAkiN7VQmMoIFK6INMrgll+7RDFjEEeSlvhx5mp63EXy1gm3TPbvbCd2/N6q1kWVQVH4Bg0gAsuQQtcgzboAATuwTN4Aa/Gk/FmvBsf89GKUWYOwR8Ynz8lVplr</latexit>

L(W)

<latexit sha1_base64="eqZnIP76s0Hnd7EgbqKjdkO6DTY=">AAACDHicbVDLSgMxFM34rOOr6tJNsAgupMyIYjdCwY24qmAf0Cklk0nb0DyGJCOWYX7BnVv9CXfi1n/wH/wIM+0stPVA4HDOPcnNCWNGtfG8L2dpeWV1bb204W5ube/slvf2W1omCpMmlkyqTog0YVSQpqGGkU6sCOIhI+1wfJ377QeiNJXi3kxi0uNoKOiAYmSs1G3DKxiko9PbIOuXK17VmwIuEr8gFVCg0S9/B5HECSfCYIa07vpebHopUoZiRjI3SDSJER6jIelaKhAnupdOV87gsVUiOJDKHmHgVP2dSBHXesJDO8mRGel5Lxf/87qJGdR6KRVxYojAs4cGCYNGwvz/MKKKYMMmliCsqN0V4hFSCBvbkhtMg2l+bR9LzpGIdNWQx8y19fjzZSyS1lnVv6h6d+eVeq0oqgQOwRE4AT64BHVwAxqgCTCQ4Bm8gFfnyXlz3p2P2eiSU2QOwB84nz+bR5tI</latexit>

W = {h, J}

Figure 2: Inductive generalization gain (illustration with a 1D loss landscape). Ŵ ⇤ is the standard
Potts model, estimated on the finite observed MSA M̂. Though it minimizes the training objective, it
does not achieve perfect generalization performance. However the Neural Potts Model W✓(x) can
generalize better than Ŵ ⇤ through transfer learning from related samples, guided by the inductive
bias of the model. We expect this especially when the estimate Ŵ ⇤ is far from W ⇤, e.g. on small or
biased MSAs.

We propose minimizing the following objective for the NPM parameters ✓, which directly minimizes
the Potts model losses in expectation over our data distribution x ⇠ D and their MSAs x̃ ⇠ M(x):

LNPM(✓) = E
x⇠D


E

x̃⇠M(x)
`PL(x̃; W✓(x))

�
(7)

To compute the loss for a given sequence x we compute the Potts model parameters W✓(x), and
evaluate its pseudo-likelihood loss `PL on a set of sequences x̃ from the MSA constructed with x as
query sequence. This fits exactly in “amortized optimization” in Section 2.1 Eq. (5): we train a model
to predict the outcome of a set of highly related optimization problems. One key extension to the
described amortized optimization setup is that the model W✓ estimates the Potts Model parameters
from only the MSA query sequence x as input rather than the full MSA M(x). Thus, our model
must learn to distill the protein energy landscape into its parameters, since it cannot look up related
proteins during runtime. A full algorithm is given in Appendix A.

Similar to the original Potts model, we need to add a regularization penalty ⇢(W) to the main
objective. For a finite sample of N different query sequences {xn}, and a corresponding sample of
N⇥ M aligned sequences {x̃m

n } from MSA M̂(xn), the finite sample regularized loss, i.e. NPM
training objective, becomes:

L̂NPM(✓) =
NX

n=1

"
1

Me↵(n)

MX

m=1

wm
n [`PL(x̃m

n ; W✓(xn))] + ⇢(W✓(xn))

#
(8)

Inductive generalization gain (see Fig. 2) is when the Neural Potts Model improves over the
individual Potts model. Intuitively this is possible because the individual Potts Models are not perfect
estimates (finite/biased MSAs), while the shared parameters of W✓ can transfer information between
related protein families and from pre-training with another objective like masked language modeling
(MLM).

Let us start with the normal amortized optimization setting, where we expect an amortization gap
(Cremer et al., 2018). The amortization gap means that W✓(x) will be behind the optimal W ⇤ for
the objective L: L(W✓(x)) > L(W ⇤). This is closely related to underfitting: the model W✓ is
not flexible enough to capture W ⇤(x). However, recall that in the Potts model setting, there is a
finite-sample training objective L̂ (Eq. (8)), with minimizer Ŵ ⇤. We can expect an amortization
gap in the training objective; however this amortization gap can now be advantageous. Even if the
amortized solution W✓(x) is near-optimal on L̂, it can likely find a more generalizable region of the
overparametrized domain W by parameter sharing of ✓, allowing it to transfer information between

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.08.439084doi: bioRxiv preprint

Contact predictions

Appeared at MLCB 2020

MSA Optimize Potts modelSearch & align

 NPM forward pass

(a)

(b)

 <latexit sha1_base64="VpBYx8KBtbtmQyanTuTKsJePYq0=">AAACC3icbVC9TsMwGHTKXwl/BUaWiAoJMUQJqkTHSiyMRaK0qA2V4zitVduJ7C+IKuobsLHCSzAiVh6Cd+AhcNsM0HKSpdPdd/bnC1PONHjel1VaWV1b3yhv2lvbO7t7lf2DW51kitAWSXiiOiHWlDNJW8CA006qKBYhp+1wdDn12w9UaZbIGxinNBB4IFnMCAYj3fWGGPL25P6sX6l6rjeDs0z8glRRgWa/8t2LEpIJKoFwrHXX91IIcqyAEU4ndi/TNMVkhAe0a6jEguogny08cU6MEjlxosyR4MzU34kcC63HIjSTAsNQL3pT8T+vm0FcD3Im0wyoJPOH4ow7kDjT3zsRU5QAHxuCiWJmV4cMscIETEd2bxbMp9f2SSIElpF2gT5ObFOPv1jGMmmfu37N9f3rWrVRL5oqoyN0jE6Rjy5QA12hJmohggR6Ri/o1Xqy3qx362M+WrKKzCH6A+vzBwm3m3c=</latexit>

Ŵ ⇤

 <latexit sha1_base64="uj0xUAHaOlUix9xEuwY6N3/mAOs=">AAACD3icbVDLSsNAFJ3UV62vqks3wSLoJiRS0KXgxmUFawtNKJPprR06M4kzN2IJ/Qd3bvUnXIpbP8F/8COcpF34OjBwOOeeO5cTp4Ib9P0Pp7KwuLS8Ul2tra1vbG7Vt3euTZJpBm2WiER3Y2pAcAVt5Cigm2qgMhbQicfnhd+5A214oq5wkkIk6Y3iQ84oWinq9EMcAdLD8O7+qF9v+J5fwv1LgjlpkDla/fpnOEhYJkEhE9SYXuCnGOVUI2cCprUwM5BSNqY30LNUUQkmysujp+6BVQbuMNH2KXRL9Xsip9KYiYztpKQ4Mr+9QvzP62U4PI1yrtIMQbHZR8NMuJi4RQPugGtgKCaWUKa5vdVlI6opQ9tTLSyDebG2zxIpqRoYD+F+WrP1BL/L+Es6x17Q9ILgstk4O503VSV7ZJ8ckoCckDNyQVqkTRi5JY/kiTw7D86L8+q8zUYrzjyzS37Aef8C0qyc8g==</latexit>

W✓(x)

 <latexit sha1_base64="y4rTRq5tBepqewKMpv+wjye77E0=">AAACBXicbVC9TsMwGHTKXwl/BUaWiAqJKUpQJTpWYmEsgtJKTVQ5rtNa9U9kO1WrqCsbK7wEI2LlOXgHHgInzQAtJ1k63X1nf74ooURpz/uyKhubW9s71V17b//g8Kh2fPKoRCoR7iBBhexFUGFKOO5ooinuJRJDFlHcjSY3ud+dYqmI4A96nuCQwREnMUFQG+k+mM4GtbrnegWcdeKXpA5KtAe172AoUMow14hCpfq+l+gwg1ITRPHCDlKFE4gmcIT7hnLIsAqzYtWFc2GUoRMLaQ7XTqH+TmSQKTVnkZlkUI/VqpeL/3n9VMfNMCM8STXmaPlQnFJHCyf/tzMkEiNN54ZAJInZ1UFjKCHSph07KIJZfu0ACcYgHypX49nCNvX4q2Wsk+6V6zdc379r1FvNsqkqOAPn4BL44Bq0wC1ogw5AYASewQt4tZ6sN+vd+liOVqwycwr+wPr8AaJFmRU=</latexit>x

 <latexit sha1_base64="y4rTRq5tBepqewKMpv+wjye77E0=">AAACBXicbVC9TsMwGHTKXwl/BUaWiAqJKUpQJTpWYmEsgtJKTVQ5rtNa9U9kO1WrqCsbK7wEI2LlOXgHHgInzQAtJ1k63X1nf74ooURpz/uyKhubW9s71V17b//g8Kh2fPKoRCoR7iBBhexFUGFKOO5ooinuJRJDFlHcjSY3ud+dYqmI4A96nuCQwREnMUFQG+k+mM4GtbrnegWcdeKXpA5KtAe172AoUMow14hCpfq+l+gwg1ITRPHCDlKFE4gmcIT7hnLIsAqzYtWFc2GUoRMLaQ7XTqH+TmSQKTVnkZlkUI/VqpeL/3n9VMfNMCM8STXmaPlQnFJHCyf/tzMkEiNN54ZAJInZ1UFjKCHSph07KIJZfu0ACcYgHypX49nCNvX4q2Wsk+6V6zdc379r1FvNsqkqOAPn4BL44Bq0wC1ogw5AYASewQt4tZ6sN+vd+liOVqwycwr+wPr8AaJFmRU=</latexit>x

Figure 1: (a) Standard Potts model requires constructing an MSA and optimizing parameters W .
(b) Neural Potts Model (NPM) predicts W in a single feedforward pass from a single sequence.

To evaluate the approach, we focus on the problem setting of unsupervised contact prediction for
proteins with low-depth MSAs. Unsupervised structure learning with Potts models performs poorly
when few related sequences are available (Jones et al., 2011; Kamisetty et al., 2013; Moult et al., 2016).
Since larger protein families are likely to have structures available, the proteins of greatest interest for
unsupervised structure prediction are likely to have lower depth MSAs (Tetchner et al., 2014). This is
especially a problem for higher organisms, where there are fewer related genomes (Tetchner et al.,
2014). The hope is that for low-depth MSAs, the parameter sharing in the neural model will improve
results relative to fitting an independent Potts model to each family.

We investigate the NPM objective in a controlled ablation experiment on a group of related protein
families in PFAM (Finn et al., 2016). In this artificial setting, information can be generalized by the
pre-trained shared parameters to improve unsupervised contact prediction on a subset of the MSAs
that have been artificially truncated to reduce their number of sequences. We then study the model in
the setting of a large dataset without artificial reduction, training the model on MSAs for UniRef50
sequences. In this setting there is also an improvement on average for low depth MSAs both for
sequences in the training set as well as for sequences not in the training set.

2 BACKGROUND

Multiple sequence alignments An MSA is a set of aligned protein sequences that are evolutionarily
related. MSAs are constructed by retrieving related sequences from a sequence database and aligning
the returned sequences using a heuristic. An MSA can be viewed as a matrix where each row is a
sequence, and columns contain aligned positions after removing insertions and replacing deletions
with gap characters.

Potts model The generalized Potts model defines a Gibbs distribution over a protein sequence
(x1, . . . , xL) of length L with the negative energy function:

�E(x) =
X

i

hi(xi) +
X

ij

Jij(xi, xj) (1)

Which defines potentials hi for each position in the sequence, and couplings Jij for every pair of
positions. The parameters of the model are W = {h, J} the set of fields and couplings respectively.
The distribution p(x; W) is obtained by normalization as exp{�E(x; W)}/Z(W).

Since the normalization constant is intractable, pseudolikelihood is commonly used to fit the parame-
ters (Balakrishnan et al., 2011; Ekeberg et al., 2013). Pseudolikelihood approximates the likelihood
of a sequence x as a product of conditional distributions: `PL(x; W) = �

P
i log p(xi|x�i; W). To

estimate the Potts model, we take the expectation:

LPL(W) = E
x⇠M

[`PL(x; W)] (2)

over an MSA M. In practice, we have a finite set of sequences M̂ in the MSA to estimate Eq. (2).
L2 regularization ⇢(W) = �J kJk2 + �h khk2 is added, and sequences are reweighted to account
for redundancy (Morcos et al., 2011). We write the regularized finite sample estimator as:

L̂PL(W) =
1

Me↵

MX

m=1

wm[`PL(xm; W)] + ⇢(W) (3)

Which sums over all the M sequences of the finite MSA M̂, weighted with wm summing collectively
to Me↵ . The finite sample estimate of the parameters Ŵ ⇤ is obtained by minimizing L̂PL.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.08.439084doi: bioRxiv preprint

Appeared at MLCB 2020

MSA Optimize Potts modelSearch & align

 NPM forward pass

(a)

(b)

 <latexit sha1_base64="VpBYx8KBtbtmQyanTuTKsJePYq0=">AAACC3icbVC9TsMwGHTKXwl/BUaWiAoJMUQJqkTHSiyMRaK0qA2V4zitVduJ7C+IKuobsLHCSzAiVh6Cd+AhcNsM0HKSpdPdd/bnC1PONHjel1VaWV1b3yhv2lvbO7t7lf2DW51kitAWSXiiOiHWlDNJW8CA006qKBYhp+1wdDn12w9UaZbIGxinNBB4IFnMCAYj3fWGGPL25P6sX6l6rjeDs0z8glRRgWa/8t2LEpIJKoFwrHXX91IIcqyAEU4ndi/TNMVkhAe0a6jEguogny08cU6MEjlxosyR4MzU34kcC63HIjSTAsNQL3pT8T+vm0FcD3Im0wyoJPOH4ow7kDjT3zsRU5QAHxuCiWJmV4cMscIETEd2bxbMp9f2SSIElpF2gT5ObFOPv1jGMmmfu37N9f3rWrVRL5oqoyN0jE6Rjy5QA12hJmohggR6Ri/o1Xqy3qx362M+WrKKzCH6A+vzBwm3m3c=</latexit>

Ŵ ⇤

 <latexit sha1_base64="uj0xUAHaOlUix9xEuwY6N3/mAOs=">AAACD3icbVDLSsNAFJ3UV62vqks3wSLoJiRS0KXgxmUFawtNKJPprR06M4kzN2IJ/Qd3bvUnXIpbP8F/8COcpF34OjBwOOeeO5cTp4Ib9P0Pp7KwuLS8Ul2tra1vbG7Vt3euTZJpBm2WiER3Y2pAcAVt5Cigm2qgMhbQicfnhd+5A214oq5wkkIk6Y3iQ84oWinq9EMcAdLD8O7+qF9v+J5fwv1LgjlpkDla/fpnOEhYJkEhE9SYXuCnGOVUI2cCprUwM5BSNqY30LNUUQkmysujp+6BVQbuMNH2KXRL9Xsip9KYiYztpKQ4Mr+9QvzP62U4PI1yrtIMQbHZR8NMuJi4RQPugGtgKCaWUKa5vdVlI6opQ9tTLSyDebG2zxIpqRoYD+F+WrP1BL/L+Es6x17Q9ILgstk4O503VSV7ZJ8ckoCckDNyQVqkTRi5JY/kiTw7D86L8+q8zUYrzjyzS37Aef8C0qyc8g==</latexit>

W✓(x)

 <latexit sha1_base64="y4rTRq5tBepqewKMpv+wjye77E0=">AAACBXicbVC9TsMwGHTKXwl/BUaWiAqJKUpQJTpWYmEsgtJKTVQ5rtNa9U9kO1WrqCsbK7wEI2LlOXgHHgInzQAtJ1k63X1nf74ooURpz/uyKhubW9s71V17b//g8Kh2fPKoRCoR7iBBhexFUGFKOO5ooinuJRJDFlHcjSY3ud+dYqmI4A96nuCQwREnMUFQG+k+mM4GtbrnegWcdeKXpA5KtAe172AoUMow14hCpfq+l+gwg1ITRPHCDlKFE4gmcIT7hnLIsAqzYtWFc2GUoRMLaQ7XTqH+TmSQKTVnkZlkUI/VqpeL/3n9VMfNMCM8STXmaPlQnFJHCyf/tzMkEiNN54ZAJInZ1UFjKCHSph07KIJZfu0ACcYgHypX49nCNvX4q2Wsk+6V6zdc379r1FvNsqkqOAPn4BL44Bq0wC1ogw5AYASewQt4tZ6sN+vd+liOVqwycwr+wPr8AaJFmRU=</latexit>x

 <latexit sha1_base64="y4rTRq5tBepqewKMpv+wjye77E0=">AAACBXicbVC9TsMwGHTKXwl/BUaWiAqJKUpQJTpWYmEsgtJKTVQ5rtNa9U9kO1WrqCsbK7wEI2LlOXgHHgInzQAtJ1k63X1nf74ooURpz/uyKhubW9s71V17b//g8Kh2fPKoRCoR7iBBhexFUGFKOO5ooinuJRJDFlHcjSY3ud+dYqmI4A96nuCQwREnMUFQG+k+mM4GtbrnegWcdeKXpA5KtAe172AoUMow14hCpfq+l+gwg1ITRPHCDlKFE4gmcIT7hnLIsAqzYtWFc2GUoRMLaQ7XTqH+TmSQKTVnkZlkUI/VqpeL/3n9VMfNMCM8STXmaPlQnFJHCyf/tzMkEiNN54ZAJInZ1UFjKCHSph07KIJZfu0ACcYgHypX49nCNvX4q2Wsk+6V6zdc379r1FvNsqkqOAPn4BL44Bq0wC1ogw5AYASewQt4tZ6sN+vd+liOVqwycwr+wPr8AaJFmRU=</latexit>x

Figure 1: (a) Standard Potts model requires constructing an MSA and optimizing parameters W .
(b) Neural Potts Model (NPM) predicts W in a single feedforward pass from a single sequence.

To evaluate the approach, we focus on the problem setting of unsupervised contact prediction for
proteins with low-depth MSAs. Unsupervised structure learning with Potts models performs poorly
when few related sequences are available (Jones et al., 2011; Kamisetty et al., 2013; Moult et al., 2016).
Since larger protein families are likely to have structures available, the proteins of greatest interest for
unsupervised structure prediction are likely to have lower depth MSAs (Tetchner et al., 2014). This is
especially a problem for higher organisms, where there are fewer related genomes (Tetchner et al.,
2014). The hope is that for low-depth MSAs, the parameter sharing in the neural model will improve
results relative to fitting an independent Potts model to each family.

We investigate the NPM objective in a controlled ablation experiment on a group of related protein
families in PFAM (Finn et al., 2016). In this artificial setting, information can be generalized by the
pre-trained shared parameters to improve unsupervised contact prediction on a subset of the MSAs
that have been artificially truncated to reduce their number of sequences. We then study the model in
the setting of a large dataset without artificial reduction, training the model on MSAs for UniRef50
sequences. In this setting there is also an improvement on average for low depth MSAs both for
sequences in the training set as well as for sequences not in the training set.

2 BACKGROUND

Multiple sequence alignments An MSA is a set of aligned protein sequences that are evolutionarily
related. MSAs are constructed by retrieving related sequences from a sequence database and aligning
the returned sequences using a heuristic. An MSA can be viewed as a matrix where each row is a
sequence, and columns contain aligned positions after removing insertions and replacing deletions
with gap characters.

Potts model The generalized Potts model defines a Gibbs distribution over a protein sequence
(x1, . . . , xL) of length L with the negative energy function:

�E(x) =
X

i

hi(xi) +
X

ij

Jij(xi, xj) (1)

Which defines potentials hi for each position in the sequence, and couplings Jij for every pair of
positions. The parameters of the model are W = {h, J} the set of fields and couplings respectively.
The distribution p(x; W) is obtained by normalization as exp{�E(x; W)}/Z(W).

Since the normalization constant is intractable, pseudolikelihood is commonly used to fit the parame-
ters (Balakrishnan et al., 2011; Ekeberg et al., 2013). Pseudolikelihood approximates the likelihood
of a sequence x as a product of conditional distributions: `PL(x; W) = �

P
i log p(xi|x�i; W). To

estimate the Potts model, we take the expectation:

LPL(W) = E
x⇠M

[`PL(x; W)] (2)

over an MSA M. In practice, we have a finite set of sequences M̂ in the MSA to estimate Eq. (2).
L2 regularization ⇢(W) = �J kJk2 + �h khk2 is added, and sequences are reweighted to account
for redundancy (Morcos et al., 2011). We write the regularized finite sample estimator as:

L̂PL(W) =
1

Me↵

MX

m=1

wm[`PL(xm; W)] + ⇢(W) (3)

Which sums over all the M sequences of the finite MSA M̂, weighted with wm summing collectively
to Me↵ . The finite sample estimate of the parameters Ŵ ⇤ is obtained by minimizing L̂PL.

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

The copyright holder for this preprint (whichthis version posted April 11, 2021. ; https://doi.org/10.1101/2021.04.08.439084doi: bioRxiv preprint

parameterized by 𝑊 = {ℎ, 𝐽}

This talk: amortized optimization
Design decisions

Modeling paradigms for)𝑦" (fully-amortized and semi-amortized models)
Learning paradigms for ℒ (objective-based and regression-based)

Selected applications
Reinforcement learning
Neural Potts Model for protein modeling
Meta optimal transport

Brandon Amos Amortized optimization 20

Meta Optimal Transport

Goal: optimally transport mass between measures 𝛼 to 𝛽

𝜋⋆ 𝛼, 𝛽, 𝑐 ∈ argmin
2∈𝒰 5,6

T
𝒳×𝒴

𝑐 𝑥, 𝑦 d𝜋(𝑥, 𝑦)

Use amortization when repeatedly coupling measures
e.g., between pairs of images or physical transport

Often amortize over unconstrained dual potentials

Brandon Amos Amortized optimization 21

Meta OT for Sinkhorn

Brandon Amos Amortized optimization 22

Sinkhorn (converged, ground-truth)

↵0 ↵1
↵2

Meta OT (initial prediction)

↵0 ↵1
↵2

Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ⇡100 times
computationally cheaper and produces a nearly identical coupling.

↵

�

z1

z2

z

'̂✓

Parameters

 '̂✓

ICNN

T̂ (·) = rx '̂✓ (·)
Transport map

ResNet✓

ResNet✓

MLP✓

Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures ↵ and � into latents z that are decoded with an MLP into the parameters ' of an ICNN
dual potential '. The derivative of the ICNN provides the transport map T̂ .

Table 1: Discrete OT runtime (in seconds) to reach
a marginal error of 10�3 and Meta OT’s runtime.

MNIST Spherical

Sinkhorn 3.3 · 10�3 ±1.0 · 10�3 1.5 ±0.64
Meta OT + Sinkhorn 2.2 · 10�3 ±3.8 · 10�4 0.48 ±.24

Meta OT (Initial prediction) 4.6 · 10�5 ±2.8 · 10�6 4.4 · 10�5 ±3.2 · 10�6

Table 2: Color transfer runtimes and values.

Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10�3 ±2.7 · 10�4 0.90 ±6.08 · 10�2

+ W2GN 1k 0.93 ±2.27 · 10�2 1.0 ±2.57 · 10�3

2k 1.84 ±3.78 · 10�2 1.0 ±5.30 · 10�3

W2GN 1k 0.90 ±1.62 · 10�2 0.96 ±2.62 · 10�2

2k 1.81 ±3.05 · 10�2 0.99 ±1.14 · 10�2

We report the mean and (standard deviation) across 10 test instances.

Amortization objective. We build on the W2GN formulation [Korotin et al., 2019] and seek pa-
rameters '? optimizing the dual ICNN potentials ' and ' with L(';↵,�) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with '̂✓(↵,�) param-
eterized by ✓, resulting in a computationally efficient approximation to the optimum '̂✓ ⇡ '

?.
Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 [He et al., 2016] archi-
tecture for coupling image-based measures. We again emphasize that ↵,� used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
✓

E
(↵,�)⇠D

L('̂✓(↵,�);↵,�). (17)

As in the discrete setting, it does not require ground-truth solutions '? and we learn it with Adam.

4 Experiments

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
[Bradbury et al., 2018] as an extension to the the Optimal Transport Tools (OTT) package [Cuturi
et al., 2022]. All experiments take roughly ⇡2 hours to run on our single Quadro GP100 GPU.
App. C covers further experimental and implementation details. The source code to reproduce all of
our experiments is available at http://github.com/facebookresearch/meta-ot.

6

Sinkhorn Meta OT + Sinkhorn

Figure 4: Sinkhorn convergence on test instances. Meta OT successfully predicts warm-start initial-
izations that significantly improve the convergence of Sinkhorn iterations.

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 5: Test set coupling predictions of the spherical transport problem. Meta OT’s initial pre-
diction is ⇡37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport maps T going to demand locations at the
end. The sphere is visualized with the Mercator projection.

4.1 Discrete OT between MNIST digits

Images provide a natural setting for Meta OT where the distribution over images provide the meta-
distribution D over OT problems. Given a pair of images ↵0 and ↵1, each grayscale image is
cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of
the atoms. The goal is to compute the optimal transport interpolation between the two measures
as in, e.g., Peyré et al. [2019, §7]. Formally, this means computing the optimal coupling P

? by
solving the entropic optimal transport problem between ↵0 and ↵1 and computing the interpolates
as ↵t = (t projy +(1� t) projx)#P

?, for t 2 [0, 1], where projx(x, y) := x and projy(x, y) = y.
We selected ✏ = 10�2 as app. A shows that it gives interpolations that are not too blurry or sharp.

Our Meta OT model f̂✓ (sect. 3.1) is an MLP that predicts the transport map between pairs of
MNIST digits. We train on every pair from the standard training dataset. Figure 2 shows that even
without fine-tuning, Meta OT’s predicted Wasserstein interpolations between the measures are close
to the ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence.
We then fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the
near-optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the
default initialization, and table 1 shows the runtime required to reach the default threshold.

7

↵

�

c

⇡
?

✓

D
General

↵

�

c

f
?

g
?

P
?

✓

D
Discrete (Entropic)

↵

�
?

T
?

✓

D
Continuous (Wasserstein-2)

Input measures and cost Dual potentials Couplings

Figure 1: Meta OT uses objective-based amortization for optimal transport. In the general formula-
tion, the parameters ✓ capture shared structure in the optimal couplings ⇡? between multiple input
measures and costs over some distribution D. In practice, we learn this shared structure over the
dual potentials which map back to the coupling: f? in discrete settings and ? in continuous ones.

2.2 Amortized optimization and learning to optimize

Our paper is an application of amortized optimization methods that predict the solutions of opti-
mization problems, as surveyed in, e.g., Chen et al. [2021], Amos [2022]. We use the basic setup
from Amos [2022], which considers unconstrained continuous optimization problems of the form

z
?(�) 2 argmin

z
J(z;�), (13)

where J is the objective, z 2 Z is the domain, and � 2 � is some context or parameterization. In
other words, the context conditions the objective but is not optimized over. Given a distribution over
contexts P(�), we learn a model ẑ✓ parameterized by ✓ to approximate eq. (13), i.e. ẑ✓(�) ⇡ z

?(�).
J will be differentiable for us, so we optimize the parameters using objective-based learning with

min
✓

E
�⇠P(�)

J(ẑ✓(�);�), (14)

which does not require ground-truth solutions z? and can be optimized with a gradient-based solver.

3 Meta Optimal Transport

Figure 1 illustrates our key contribution of connecting objective-based amortization in eq. (14) to
optimal transport. We consider solving multiple OT problems and learning shared structure and
correlations between them. We denote a joint meta-distribution over the input measures and costs
with D(↵,�, c), which we call meta to distinguish it from the measures ↵,�.

In general, we could introduce a model that directly predicts the primal solution to eq. (1), i.e.
⇡✓(↵,�, c) ⇡ ⇡

?(↵,�, c) for (↵,�, c) ⇠ D. This is difficult for the same reason why most compu-
tational methods do not operate directly in the primal space: the optimal coupling is often a high-
dimensional joint distribution with non-trivial marginal constraints. We instead turn to predicting
the dual variables used by today’s solvers.

3.1 Meta OT between discrete measures

We build on standard methods for entropic OT reviewed in sect. 2.1.1 between discrete measures
↵ :=

Pm
i=1 ai�xi and � :=

Pn
i=1 bi�xi with a 2 �m�1 and b 2 �n�1 coupled using a cost c. In the

Meta OT setting, the measures and cost are the contexts for amortization and sampled from a meta-
distribution, i.e. (↵,�, c) ⇠ D(↵,�, c). For example, sects. 4.1 and 4.2 considers meta-distributions
over the weights of the atoms, i.e. (a, b) ⇠ D, where D is a distribution over �m�1 ⇥�n�1.

Amortization objective. We will seek to predict the optimal potential. At optimality, the pair of
potentials are related to each other via eq. (8), i.e. g(f ;↵,�, c) := ✏ log b � ✏ log

�
K

> exp{f/✏}
�

where K 2 Rm⇥n is the Gibbs kernel from eq. (5). Hence, it is sufficient to predict one of the

4

Meta OT significantly improves Sinkhorn

Brandon Amos Amortized optimization 23

0 5 10 15 20 25

Sinkhorn Iterations

0.0

0.2

0.4

E
rr

or

MNIST

0 200 400 600 800 1000

Sinkhorn Iterations

0.0

0.5

1.0

E
rr

or

Spherical

Sinkhorn Meta OT + Sinkhorn

Figure 4: Sinkhorn convergence on test instances. Meta OT successfully predicts warm-start initial-
izations that significantly improve the convergence of Sinkhorn iterations.

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 5: Test set coupling predictions of the spherical transport problem. Meta OT’s initial pre-
diction is ⇡37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport maps T going to demand locations at the
end. The sphere is visualized with the Mercator projection.

4.1 Discrete OT between MNIST digits

Images provide a natural setting for Meta OT where the distribution over images provide the meta-
distribution D over OT problems. Given a pair of images ↵0 and ↵1, each grayscale image is
cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of
the atoms. The goal is to compute the optimal transport interpolation between the two measures
as in, e.g., Peyré et al. [2019, §7]. Formally, this means computing the optimal coupling P

? by
solving the entropic optimal transport problem between ↵0 and ↵1 and computing the interpolates
as ↵t = (t projy +(1� t) projx)#P

?, for t 2 [0, 1], where projx(x, y) := x and projy(x, y) = y.
We selected ✏ = 10�2 as app. A shows that it gives interpolations that are not too blurry or sharp.

Our Meta OT model f̂✓ (sect. 3.1) is an MLP that predicts the transport map between pairs of
MNIST digits. We train on every pair from the standard training dataset. Figure 2 shows that even
without fine-tuning, Meta OT’s predicted Wasserstein interpolations between the measures are close
to the ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence.
We then fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the
near-optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the
default initialization, and table 1 shows the runtime required to reach the default threshold.

7

Meta OT for Continuous OT with Meta ICNNs

Brandon Amos Amortized optimization 24

Sinkhorn (converged, ground-truth)

↵0 ↵1
↵2

Meta OT (initial prediction)

↵0 ↵1
↵2

Figure 2: Interpolations between MNIST test digits using couplings obtained from (left) solving
the problem with Sinkhorn, and (right) Meta OT model’s initial prediction, which is ⇡100 times
computationally cheaper and produces a nearly identical coupling.

↵

�

z1

z2

z

'̂✓

Parameters

 '̂✓

ICNN

T̂ (·) = rx '̂✓ (·)
Transport map

ResNet✓

ResNet✓

MLP✓

Figure 3: A Meta ICNN for image-based input measures. A shared ResNet processes the input
measures ↵ and � into latents z that are decoded with an MLP into the parameters ' of an ICNN
dual potential '. The derivative of the ICNN provides the transport map T̂ .

Table 1: Discrete OT runtime (in seconds) to reach
a marginal error of 10�3 and Meta OT’s runtime.

MNIST Spherical

Sinkhorn 3.3 · 10�3 ±1.0 · 10�3 1.5 ±0.64
Meta OT + Sinkhorn 2.2 · 10�3 ±3.8 · 10�4 0.48 ±.24

Meta OT (Initial prediction) 4.6 · 10�5 ±2.8 · 10�6 4.4 · 10�5 ±3.2 · 10�6

Table 2: Color transfer runtimes and values.

Iter Runtime (s) Dual Value

Meta OT None 3.5 · 10�3 ±2.7 · 10�4 0.90 ±6.08 · 10�2

+ W2GN 1k 0.93 ±2.27 · 10�2 1.0 ±2.57 · 10�3

2k 1.84 ±3.78 · 10�2 1.0 ±5.30 · 10�3

W2GN 1k 0.90 ±1.62 · 10�2 0.96 ±2.62 · 10�2

2k 1.81 ±3.05 · 10�2 0.99 ±1.14 · 10�2

We report the mean and (standard deviation) across 10 test instances.

W2GN solver as shown in algorithm 5. App. B discusses other modeling choices we considered:
we tried models based on MAML [Finn et al., 2017] and neural processes [Garnelo et al., 2018b,a].

Amortization objective. We build on the W2GN formulation [Korotin et al., 2019] and seek pa-
rameters '? optimizing the dual ICNN potentials ' and ' with L(';↵,�) from eq. (12). We
chose W2GN due to the stability, but could also easily use other losses optimizing ICNN potentials.

Amortization model: the Meta ICNN. We predict the solution to eq. (12) with '̂✓(↵,�) param-
eterized by ✓, resulting in a computationally efficient approximation to the optimum '̂✓ ⇡ '

?.
Figure 3 instantiates a convolutional Meta ICNN model using a ResNet-18 [He et al., 2016] archi-
tecture for coupling image-based measures. We again emphasize that ↵,� used with the model here
are representations of measures, which in our cases are simply images.

Amortization loss. Applying objective-based amortization from eq. (14) to the W2GN loss in
eq. (12) completes our learning setup. Our model should best-optimize the expectation of the loss:

min
✓

E
(↵,�)⇠D

L('̂✓(↵,�);↵,�). (17)

As in the discrete setting, it does not require ground-truth solutions '? and we learn it with Adam.

4 Experiments

We demonstrate how Meta OT models improve the convergence of the state-of-the-art solvers in
settings where solving multiple OT problems naturally arises. We implemented our code in JAX
[Bradbury et al., 2018] as an extension to the the Optimal Transport Tools (OTT) package [Cuturi
et al., 2022]. All experiments take roughly ⇡2 hours to run on our single Quadro GP100 GPU.

6

↵ � T#↵ T�1
�

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The Seine by Claude Monet
(1872), obtained from WikiArt.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer

W2GN Meta OT + W2GN

Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.

8

↵

�

c

⇡
?

✓

D
General

↵

�

c

f
?

g
?

P
?

✓

D
Discrete (Entropic)

↵

�
?

T
?

✓

D
Continuous (Wasserstein-2)

Input measures and cost Dual potentials Couplings

Figure 1: Meta OT uses objective-based amortization for optimal transport. In the general formula-
tion, the parameters ✓ capture shared structure in the optimal couplings ⇡? between multiple input
measures and costs over some distribution D. In practice, we learn this shared structure over the
dual potentials which map back to the coupling: f? in discrete settings and ? in continuous ones.

2.2 Amortized optimization and learning to optimize

Our paper is an application of amortized optimization methods that predict the solutions of opti-
mization problems, as surveyed in, e.g., Chen et al. [2021], Amos [2022]. We use the basic setup
from Amos [2022], which considers unconstrained continuous optimization problems of the form

z
?(�) 2 argmin

z
J(z;�), (13)

where J is the objective, z 2 Z is the domain, and � 2 � is some context or parameterization. In
other words, the context conditions the objective but is not optimized over. Given a distribution over
contexts P(�), we learn a model ẑ✓ parameterized by ✓ to approximate eq. (13), i.e. ẑ✓(�) ⇡ z

?(�).
J will be differentiable for us, so we optimize the parameters using objective-based learning with

min
✓

E
�⇠P(�)

J(ẑ✓(�);�), (14)

which does not require ground-truth solutions z? and can be optimized with a gradient-based solver.

3 Meta Optimal Transport

Figure 1 illustrates our key contribution of connecting objective-based amortization in eq. (14) to
optimal transport. We consider solving multiple OT problems and learning shared structure and
correlations between them. We denote a joint meta-distribution over the input measures and costs
with D(↵,�, c), which we call meta to distinguish it from the measures ↵,�.

In general, we could introduce a model that directly predicts the primal solution to eq. (1), i.e.
⇡✓(↵,�, c) ⇡ ⇡

?(↵,�, c) for (↵,�, c) ⇠ D. This is difficult for the same reason why most compu-
tational methods do not operate directly in the primal space: the optimal coupling is often a high-
dimensional joint distribution with non-trivial marginal constraints. We instead turn to predicting
the dual variables used by today’s solvers.

3.1 Meta OT between discrete measures

We build on standard methods for entropic OT reviewed in sect. 2.1.1 between discrete measures
↵ :=

Pm
i=1 ai�xi and � :=

Pn
i=1 bi�xi with a 2 �m�1 and b 2 �n�1 coupled using a cost c. In the

Meta OT setting, the measures and cost are the contexts for amortization and sampled from a meta-
distribution, i.e. (↵,�, c) ⇠ D(↵,�, c). For example, sects. 4.1 and 4.2 considers meta-distributions
over the weights of the atoms, i.e. (a, b) ⇠ D, where D is a distribution over �m�1 ⇥�n�1.

Amortization objective. We will seek to predict the optimal potential. At optimality, the pair of
potentials are related to each other via eq. (8), i.e. g(f ;↵,�, c) := ✏ log b � ✏ log

�
K

> exp{f/✏}
�

where K 2 Rm⇥n is the Gibbs kernel from eq. (5). Hence, it is sufficient to predict one of the

4

↵ � T#↵ T�1
�

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
The image generating ↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The
Seine by Claude Monet (1872), obtained from WikiArt.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer

0 500 1000 1500 2000

W2GN Iterations

0.00

0.25

0.50

0.75

1.00

D
u
al

O
b
je

ct
iv

e

W2GN Meta OT + W2GN

Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.

8

Meta ICNN: Predict parameters of ICNN coupling 𝛼 and 𝛽

Brandon Amos Amortized optimization 25

↵ � T#↵ T�1
�

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.

17

↵ � T#↵ T�1
�

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.

17

↵ � T#↵ T�1
�

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.

17

More Meta OT color transfer predictions

Future directions and limitations
Amortized optimization is established and budding with new methods and applications

Possible to expand far beyond unconstrained continuous Euclidean optimization settings:
1. New applications and settings for semi-amortized modeling
2. Constrained domains (e.g., with differentiable projections)
3. Discrete optimization settings (e.g., with differentiable discrete optimization)
4. Non-Euclidean settings (e.g., with Riemannian optimization)

Potential limitations:
1. Difficult in out-of-domain settings when the contexts significantly change
2. Generally difficult to ensure stability or convergence
3. Typically does not solve previously intractable problems
4. Can be difficult to obtain high-accuracy solutions without fine-tuning/semi-amortization

Brandon Amos Amortized optimization 26

5.1.2 Unconstrained ! constrained optimization

Amortized constrained optimization problems may naturally arise, for example in the convex
optimization settings we consider in section 6.4 and for optimization over the sphere we
discuss in section 7. Constrained optimization problems for amortization can often be
represented as an extension of eq. (1) with

y
?
(x) 2 argmin

y2C
f(y;x), (18)

where the constraints C may also depend on the context x A budding research area studies
how to more generally include constraints into the formulation. Baker (2019); Dong et al.
(2020); Zamzam and Baker (2020); Pan et al. (2020) learn to warm-start for optimal power
flow. Misra et al. (2021) learn active sets for constrained optimization. Kriváchy et al. (2020)
solves constrained feasibility SDPs with a fully-amortized neural network model using an
objective-based loss. Donti et al. (2021) learns a fully-amortized model and optimizes an
objective-based loss with additional completion and correction terms to ensure the prediction
satisfies the constraints of the original problem.

Differentiable projections. When the constraints are relatively simple, a differentiable
projection can transform a constrained optimization problem into an unconstrained one,
e.g., in reinforcement learning constrained action spaces can be transformed from the box
[�1, 1]

n to the reals Rn by using the tanh to project from R
n to [�1, 1]

n. Section 7 also uses
a differentiable projection from R

n onto the sphere Sn�1. We define these as:

Definition 4 A projection from R
n onto a set C ✓ R

n is

⇡C : R
n ! C ⇡C(x) 2 argmin

y2C
D(x, y) + ⌦(y), (19)

where D : R
n ⇥ R

n ! R is a distance and ⌦ : R
n ! R

is a regularizer that can ensure invertibility or help spread
R
n more uniformly throughout C. A (sub)differentiable

projection has (sub)derivatives rx⇡C(x). We sometimes
omit the dependence of ⇡ on the choice of D, ⌦, and C when
they are given by the surrounding context.

C

x

⇡C(x)

Lack of idempotency. In linear algebra, a projection is defined to be idempotent,
i.e. applying the projection twice gives the same result so that ⇡ � ⇡ = ⇡. Unfortunately,
projections as defined in definition 4, such as Bregman projections, are not idempotent in
general and often ⇡C � ⇡C 6= ⇡C as the regularizer ⌦ may cause points that are already on C
to move to a different position on C.

Differentiable projections for constrained amortization. These can be used to
cast Eq. (18) as the unconstrained problem eq. (1) by composing the objective with a
projection f � ⇡C . (Sub)differentiable projections enable gradient-based learning through the
projection and is the most easily attainable when the projection has an explicit closed-form
solution. For intuition, we first interpret the ReLU, sigmoid, and softargmax as differentiable
projections that solve convex optimization problems in the form of eq. (19). Amos (2019,
§2.4.4) further discusses these and proves them using the KKT conditions:

17

The differentiable cross-entropy method [Amos and Yarats, ICML 2020]
Neural Potts Model [Sercu*, Verkuil*, et al., MLCB 2020]
On the model-based stochastic value gradient [Amos, Stanton, Yarats, Wilson, L4DC 2021]
Online planning via RL fine-tuning [Fickinger*, Hu*, et al., NeurIPS 2021]
Neural fixed-point acceleration [Venkataraman and Amos, ICML AutoML Workshop, 2021]
Meta Optimal Transport [Amos, Cohen, Luise, Redko, arXiv 2022]
Tutorial on amortized optimization [Amos, arXiv 2022]

Tutorial on amortized optimization
Brandon Amos
Meta AI NYC, Fundamental AI Research (FAIR)

github.com/facebookresearch/amortized-optimization-tutorial

Brandon Amos
� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos

� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8

Collaborators: Noam Brown, Caroline Chen, Samuel Cohen, Arnaud Fickinger, Hengyuan Hu, Yann LeCun, Zeming Lin, Jason Liu, Giulia
Luise, Joshua Meier, Ievgen Redko, Tom Sercu, Alexander Rives, Samuel Stanton, Shoba Venkataraman, Stuart Russel, Robert Verkuil,
Andrew Gordon Wilson, Denis Yarats

brandondamos bamos.github.io
Brandon Amos

� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos
� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8

Brandon Amos
� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos

� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8

https://arxiv.org/abs/1909.12830
https://www.biorxiv.org/content/10.1101/2021.04.08.439084v1.abstract
https://arxiv.org/abs/2008.12775
https://arxiv.org/abs/2109.15316
https://arxiv.org/abs/2107.10254
https://arxiv.org/abs/2206.05262
https://arxiv.org/abs/2202.00665
http://github.com/bamos/amortized-optimization-tutorial
bamos.github.io

