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a way of connecting probability measures
What is optimal transport?
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📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

📚 Optimal transport: old and new. Villani, 2009.
📚 Optimal Transport in Learning, Control, and Dynamical Systems.  Bunne and Cuturi, ICML 2023 Tutorial.
📚 Computational Optimal Transport. Peyré and Cuturi, Foundations and Trends in Machine Learning, 2019.
📚 Optimal Transport for Applied Mathematicians. Santambrogio, Birkhäuser, 2015
📚 Optimal Transport in Systems and Control. Chen, Georgiou, and Pavon, Annual Review of Control, Robotics, and Autonomous Systems, 2021.
📚 Optimal mass transport: Signal processing and machine-learning applications. Kolouri et al., 2017.

inf
𝑇∈𝒯(𝛼,𝛽)

∫

𝒳

𝑇 𝑥 − 𝑥
2

2
d𝛼(𝑥)

Monge’s problem (squared Euclidean)

find a map connecting 𝛼 and 𝛽   that   minimally displaces mass



Why optimal transport?

Brandon Amos Amortized optimization for optimal transport 3

(selected ML-focused highlights)

source: Bunne and Cuturi

Finds interpolating paths between populations
(e.g., for cell populations or multi-agent systems)
📚 Optimal-transport analysis of single-cell gene expression. Schiebinger et al., Cell 2019.
📚 Learning single-cell perturbation responses using neural optimal transport. Bunne et al., Nature Methods 2023.
📚 Likelihood Training of Schrödinger Bridge. Liu, Horng, Theodorou. ICLR 2022.
📚 Trajectorynet: A dynamic optimal transport network for modeling cellular dynamics. Tong et al., ICML 2020.

Couples measures without pairwise data
(e.g., for generative modeling, domain adaptation)
📚 Generative modeling via OT maps. Rout, Korotin, Burnaev. ICLR 2022.
📚 Neural Optimal Transport. Korotin et al., ICLR 2023
📚 Neural Monge map estimation. Jiaojiao Fan et al., TMLR 2023.
📚 Joint distribution optimal transportation for domain adaptation. Courty et al., NeurIPS 2017.
📚 Geometric Dataset Distances via Optimal Transport. Alvarez-Melis et al., NeurIPS 2020.

📚 Wasserstein GAN. Arjovsky, Chintala, Bottou, ICML 2017.
📚 Generalized sliced Wasserstein distances. Kolouri et al., NeurIPS 2019.
📚 Sliced wasserstein distance for learning GMMs. Kolouri et al.,  CVPR 2018.
📚 Convolutional Wasserstein Distances on Geometric Domains. Solomon et al., ToG 2015.

source: Rout et al.

Defines a metric on the space of measures
(metricizes the space of weak convergence)

https://icml.cc/media/icml-2023/Slides/21559_VFbdtkE.pdf
https://arxiv.org/abs/2110.02999


Optimization problems and sub-problems in OT
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̂𝜓 𝛼, 𝛽, 𝑐 ∈ argsup

𝜓∈𝐿1 𝛼

∫

𝒴

𝜓
𝑐
𝑦 𝑑𝛽 𝑦 −∫

𝒳

𝜓 𝑥 𝑑𝛼 𝑥

Kantorovich dual

𝜓
𝑐
𝑦 ≝ inf

𝑥

 𝜓 𝑥 + 𝑐(𝑥, 𝑦)

𝒄-transform

𝑐 𝑥, 𝑦 = inf
𝛾∈𝒞(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡

𝑐 𝑥, 𝑦 = 𝑥− 𝑦
2

2

Squared Euclidean Lagrangian (e.g., geodesics)
Costs

📚 GeomLoss. Feydy et al., AISTATS 2019.                 📚 Python Optimal Transport. Flamary et al., JMLR 2021.                            📚 Optimal Transport Tools. Cuturi et al., 2022.

inf
𝑇∈𝒯(𝛼,𝛽)

∫

𝒳

𝑇 𝑥 − 𝑥
2

2
d𝛼(𝑥)

Primal formulations
Monge (squared Euclidean)

…

Kantorovich

Easy when convex, finite-dimensional
Linear programming, Sinkhorn (entropic), forward-backward

May be hard otherwise
continuous, high-dimensional



Can ML help /solve/ OT problems? Yes!
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by rapidly predicting approximate solutions 📚 Tutorial on amortized optimization. Amos. FnT in ML, 2023.

inf
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̂𝜓 𝛼, 𝛽, 𝑐 ∈ argsup

𝜓∈𝐿1 𝛼

∫

𝒴

𝜓
𝑐
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𝑐 𝑥, 𝑦 = 𝑥− 𝑦
2

2

Primal formulations Kantorovich dual

𝒄-transform

Squared Euclidean Lagrangian (e.g., geodesics)
Costs

Monge (squared Euclidean)

…

Kantorovich

amortize this

amortize that

and this

📚 Amortized projection optimization for sliced Wasserstein.
      Nguyen et al., NeurIPS 2022.

See also:



Why call it amortized optimization?
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training the model

to amortize: to spread out an upfront cost over time

fast approximate solutions

̂𝑦
𝜃
(𝑥) ≈ 𝑦

⋆
𝑥 ∈ argmin

𝑦∈𝒴(𝑥)

𝑓(𝑦; 𝑥)

expensive upfront cost

📚 Tutorial on amortized optimization. Amos. FnT in ML, 2023.

Vertical slices are optimization problems

*also referred to as learned optimization



This talk: amortized optimization for OT

𝜓
𝑐
𝑦 ≝ inf

𝑥

 𝜓 𝑥 + 𝑐(𝑥, 𝑦)

The 𝒄-transform (e.g., the convex conjugate)
📚 Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020.
📚 Wasserstein-2 Generative Networks. Korotin et al., ICLR 2021.
📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

𝑐 𝑥, 𝑦 = inf
𝛾∈𝒫(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡

Lagrangian costs (e.g., geodesic distances)
📚 Deep Generalized Schrödinger Bridge. Liu et al., NeurIPS 2022.
📚 Riemannian metric learning via optimal transport. Scarvelis and Solomon, ICLR 2023.
📚 Neural Lagrangian Schrödinger Bridge. Koshizuka and Sato, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, 2023.
📚 A Computational Framework for Solving Wasserstein Lagrangian Flows. Neklyudov et al., 2023.
📚 Generalized Schrödinger Bridge Matching. Liu et al., 2023.

📚 Supervised training of conditional Monge maps. Bunne et al., NeurIPS 2022.
📚 Meta Optimal Transport. Amos et al., ICML 2023.

↵ � T#↵ T�1
# �

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.
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̂𝜓 𝛼, 𝛽, 𝑐 ∈ argsup

𝜓∈𝐿1 𝛼

∫

𝒴

𝜓
𝑐
𝑦 𝑑𝛽 𝑦 −∫

𝒳

𝜓 𝑥 𝑑𝛼 𝑥

OT problems (Monge maps, dual potentials)



Challenge: computing OT maps

Many OT problems are numerically solved
Improving OT solvers is active research

Solving multiple OT problems: even harder
Standard solution: independently solve

Monge (primal, Wasserstein-2)
𝑇
⋆
(𝛼, 𝛽) ∈ argmin

𝑇∈𝒯 𝛼,𝛽

𝔼
𝑥∼𝛼

𝑥 − 𝑇 𝑥
2

2

8Amortized optimization for optimal transportBrandon Amos

we also consider other/discrete OT formulations

📚 Meta Optimal Transport. Amos et al., ICML 2023.



Meta Optimal Transport
Idea: predict the solution to OT problems with amortized optimization
Simultaneously solve many OT problems, sharing info between instances

Why call it “meta”? Instead of solving a single OT problem, learn how to solve many

Monge (primal, Wasserstein-2)
𝑇
⋆
(𝛼, 𝛽) ∈ argmin

𝑇∈𝒯 𝛼,𝛽

𝔼
𝑥∼𝛼

𝑥 − 𝑇 𝑥
2

2

̂𝑇
𝜃
𝛼,𝛽  (parameterize dual potential via an MLP)

≈

9Amortized optimization for optimal transportBrandon Amos

we also consider other/discrete OT formulations



Meta OT for Discrete OT (Sinkhorn)

10

📚 Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Marco Cuturi, NeurIPS 2013.

Amortized optimization for optimal transportBrandon Amos



Wasserstein adversarial regularization
📚 Wasserstein adversarial regularization for learning with label noise. Kilian Fatras et al., TPAMI 2021.

11Amortized optimization for optimal transportBrandon Amos

Setting: discrete OT for classification with label noise

OT is repeatedly solved across minibatches
Use Meta OT to learn better solutions



RGB color palette transport

Meta OT in continuous settings (W2GN)

12

↵ � T#↵ T�1
# �

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The Seine by Claude Monet
(1872), obtained from WikiArt.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer

W2GN Meta OT + W2GN

Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.

8

📚 Wasserstein-2 Generative Networks. Alexander Korotin et al., ICLR 2021.

Amortized optimization for optimal transportBrandon Amos
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More Meta OT color transfer predictions

Amortized optimization for optimal transportBrandon Amos

📚 Meta Optimal Transport. Amos et al., ICML 2023.



Conditional Monge Maps
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image sources: Bunne and Cuturi

📚 Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurIPS 2022.

Focus: predicting drug treatments with OT
Idea: condition OT map on patient information

Methodological differences
Conditional Monge Maps ≈ Neural Processes
Predict conditioning inputs of the OT map

Meta OT ≈ Hyper-Networks
Predict parameters of an OT map

https://icml.cc/media/icml-2023/Slides/21559_VFbdtkE.pdf


OT problems (Monge maps, dual potentials)

This talk: amortized optimization for OT

𝜓
𝑐
𝑦 ≝ inf

𝑥

 𝜓 𝑥 + 𝑐(𝑥, 𝑦)

𝑐 𝑥, 𝑦 = inf
𝛾∈𝒫(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡

📚 Supervised training of conditional Monge maps. Bunne et al., NeurIPS 2022.
📚 Meta Optimal Transport. Amos et al., ICML 2023.

The 𝒄-transform (e.g., the convex conjugate)

Lagrangian costs (e.g., geodesic distances)
📚 Deep Generalized Schrödinger Bridge. Liu et al., NeurIPS 2022.
📚 Riemannian metric learning via optimal transport. Scarvelis and Solomon, ICLR 2023.
📚 Neural Lagrangian Schrödinger Bridge. Koshizuka and Sato, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, 2023.
📚 A Computational Framework for Solving Wasserstein Lagrangian Flows. Neklyudov et al., 2023.
📚 Generalized Schrödinger Bridge Matching. Liu et al., 2023.

📚 Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020.
📚 Wasserstein-2 Generative Networks. Korotin et al., ICLR 2021.
📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

̂𝜓 𝛼, 𝛽, 𝑐 ∈ argsup

𝜓∈𝐿1 𝛼

∫

𝒴

𝜓
𝑐
𝑦 𝑑𝛽 𝑦 −∫

𝒳

𝜓 𝑥 𝑑𝛼 𝑥
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Solving Kantorovich’s dual with a neural net
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📚 2-wasserstein approximation via restricted convex potentials. Taghvaei and Jalali, 2019.
📚 Three-Player Wasserstein GAN via Amortised Duality. Nhan Dam et al., IJCAI 2019.
📚 Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020.
📚 Wasserstein-2 generative networks. Korotin et al., ICLR 2020.
📚 The monge gap. Uscidda and Cuturi, ICML 2023.
📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

Under review as a conference paper at ICLR 2023

x̆(y) denotes an optimal solution to eq. (3). Even though the eq. (2) searches over functions in
L
1(↵), the optimal dual potential “f is convex (Villani, 2009, theorem 5.10). When one of the

measures has a density, Brenier (1991, theorem 3.1) and McCann (1995) relate “f to an optimal
transport map T̆ for the primal problem in eq. (1) with T̆ (x) = rx

“f(x), and the inverse to the
transport map is given by T̆

�1(y) = ry
“f?(y).

A stream of foundational papers have proposed methods to approximate the dual potential f

with a neural network and learn it by optimizing eq. (2): Taghvaei and Jalali (2019); Korotin
et al. (2019); Makkuva et al. (2020) parameterize f as an input-convex neural network (Amos et al.,
2017), which can universally represent any convex function with enough capacity (Huang et al.,
2020). Other works explore parameterizing f as a non-convex neural network (Nhan Dam et al.,
2019; Korotin et al., 2021a; Rout et al., 2021).

Efficiently solving the conjugation operation in eq. (3) is the key computational challenge to

solving the Kantorovich dual in eq. (2) and is an important design choice. Exactly computing
the conjugate as done in Taghvaei and Jalali (2019) is considered computationally challenging and
approximating it as in Korotin et al. (2019); Makkuva et al. (2020); Nhan Dam et al. (2019); Korotin
et al. (2021a); Rout et al. (2021) may be instable. Korotin et al. (2021a) fortifies this observation:

The [exact conjugate] solver is slow since each optimization step solves a hard subproblem for
computing [the conjugate]. [Solvers that approximate the conjugate] are also hard to optimize:
they either diverge from the start or diverge after converging to nearly-optimal saddle point.

In contrast to these statements on the difficulty of exactly estimating the conjugate operation,

I will show in this paper that computing the (near-)exact conjugate is easy. My key insight
is that the approximate, i.e. amortized, conjugation methods can be combined with a fine-tuning
procedure using the approximate solution as a starting point. Sect. 3 discusses the amortization
design choices and sect. 3.2.2 presents a new amortization perspective on the cycle consistency term
used in Wasserstein-2 generative networks (Korotin et al., 2019), which was previously not seen in
this way. Sect. 5 shows that amortizing and fine-tuning the conjugate results in state-of-the-art

performance in all of the tasks proposed in the Wasserstein-2 benchmark by Korotin et al.

(2021a). Amortization with fine-tuning also nicely models synthetic settings (sect. 6), including for
learning a single-block potential flow without using the likelihood.

2 LEARNING DUAL POTENTIALS: A CONJUGATION PERSPECTIVE

This section reviews the standard methods of learning parameterized dual potentials to solve eq. (2).
The first step is to re-cast the Kantorovich dual problem eq. (2) as being over a parametric family
of potentials f✓ with parameter ✓ as an input-convex neural network (Amos et al., 2017) or a more
general non-convex neural network. Taghvaei and Jalali (2019); Makkuva et al. (2020) have laid the
foundations for optimizing the parametric potentials for the dual objective with:
max

✓
V(✓) where V(✓) := � E

x⇠↵
[f✓(x)]� E

y⇠�
[f?

✓ (y)] = � E
x⇠↵

[f✓(x)]+ E
y⇠�

[Jf✓ (x̆(y))] . (4)

x̆(y) is the solution to the convex conjugate and eq. (4) assumes a finite solution to eq. (2) exists and
replaces the sup with a max. Taghvaei and Jalali (2019) show that the model can be learned, i.e. the
optimal parameters can be found, by taking gradient steps of the dual with respect to the parameters
of the potential, i.e. using r✓V . This derivative going through the loss and conjugation operation
can be obtained by applying Danskin’s envelope theorem (Danskin, 1966; Bertsekas, 1971) and
results in only needing derivatives of the potential:

r✓V(✓) = r✓


� E

x⇠↵
[f✓(x)] + E

y⇠�
[Jf✓ (x̆(y))]

�

= � E
x⇠↵

[r✓f✓(x)] + E
y⇠�

[r✓f✓(x̆(y))]
(5)

where x̆(y) is not differentiated through.

Assumption 1 A standard assumption is that the conjugate is smooth with a well-defined argmin.
This has been shown to hold when f is strongly convex, e.g. in Kakade et al. (2009), or when f is
essentially strictly convex (Rockafellar, 2015, theorem 26.3).

2
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[Jf✓ (x̆(y))] . (4)

x̆(y) is the solution to the convex conjugate and eq. (4) assumes a finite solution to eq. (2) exists and
replaces the sup with a max. Taghvaei and Jalali (2019) show that the model can be learned, i.e. the
optimal parameters can be found, by taking gradient steps of the dual with respect to the parameters
of the potential, i.e. using r✓V . This derivative going through the loss and conjugation operation
can be obtained by applying Danskin’s envelope theorem (Danskin, 1966; Bertsekas, 1971) and
results in only needing derivatives of the potential:

r✓V(✓) = r✓


� E

x⇠↵
[f✓(x)] + E

y⇠�
[Jf✓ (x̆(y))]

�

= � E
x⇠↵

[r✓f✓(x)] + E
y⇠�

[r✓f✓(x̆(y))]
(5)

where x̆(y) is not differentiated through.

Assumption 1 A standard assumption is that the conjugate is smooth with a well-defined argmin.
This has been shown to hold when f is strongly convex, e.g. in Kakade et al. (2009), or when f is
essentially strictly convex (Rockafellar, 2015, theorem 26.3).
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ABSTRACT

This paper focuses on computing the convex conjugate operation that arises when
solving Euclidean Wasserstein-2 optimal transport problems. This conjugation,
which is also referred to as the Legendre-Fenchel conjugate or c-transform, is
considered difficult to compute and in practice, Wasserstein-2 methods are limited
by not being able to exactly conjugate the dual potentials in continuous space.
To overcome this, the computation of the conjugate can be approximated with
amortized optimization, which learns a model to predict the conjugate. I show that
combining amortized approximations to the conjugate with a solver for fine-tuning
significantly improves the quality of transport maps learned for the Wasserstein-2
benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional
couplings and flows considered in the literature.

1 INTRODUCTION

Optimal transportation (Villani, 2009; Ambrosio, 2003; Santambrogio, 2015; Peyré et al., 2019)
is a thriving area of research that provides a way of connecting and transporting between proba-
bility measures. While optimal transport between discrete measures is well-understood, e.g. with
Sinkhorn distances (Cuturi, 2013), optimal transport between continuous measures is an open re-
search topic actively being investigated (Genevay et al., 2016; Seguy et al., 2017; Taghvaei and
Jalali, 2019; Korotin et al., 2019; Makkuva et al., 2020; Fan et al., 2021; Asadulaev et al., 2022).
Continuous OT has applications in generative modeling (Arjovsky et al., 2017; Petzka et al., 2017;
Wu et al., 2018; Liu et al., 2019; Cao et al., 2019; Leygonie et al., 2019), domain adaptation (Luo
et al., 2018; Shen et al., 2018; Xie et al., 2019), barycenter computation (Li et al., 2020; Fan et al.,
2020; Korotin et al., 2021b), and biology (Bunne et al., 2021; 2022; Lübeck et al., 2022).

This paper focuses on estimating the Wasserstein-2 transport map between measures ↵ and � in
Euclidean space, i.e. supp(↵) = supp(�) = Rn with the Euclidean distance as the transport cost.
The Wasserstein-2 transport map, T̆ : Rn ! Rn, is the solution to Monge’s primal formulation:

T̆ 2 arg inf
T2T (↵,�)

E
x⇠↵

kx� T (x)k2, (1)

where T (↵,�) := {T : T#↵ = �} is the set of admissible couplings and the push-forward operator
# is defined by T#↵(B) := ↵(T�1(B)) for a measure ↵, measurable map T , and all measurable
sets B. T̆ exists and is unique under general settings, e.g. as in Santambrogio (2015, Theorem 1.17),
and is often difficult to solve because of the coupling constraints T . Almost every computational

method instead solves the Kantorovich dual, e.g. as formulated in Villani (2009, §5) and Peyré
et al. (2019, §2.5). This paper focuses on the dual associated with the negative inner product cost
(Villani, 2009, eq. 5.12), which introduces a dual potential function f : Rn ! R and solves:

“f 2 arg sup
f2L1(↵)

� E
x⇠↵

[f(x)]� E
y⇠�

[f?(y)] (2)

where L1(↵) is the space of measurable functions that are Lebesgue-integrable over ↵ and f
? is the

convex conjugate, or Legendre-Fenchel transform, of a function f defined by:

f
?(y) := � inf

x2X
Jf (x; y) with objective Jf (x; y) := f(x)� hx, yi. (3)

1
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Conjugate amortization loss choices
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Algorithm 1 Learning Wasserstein-2 dual potentials with amortized and fine-tuned conjugation
Inputs: Measures ↵ and � to couple, initial dual potential f✓, and initial amortization model x̃'

while unconverged do

Sample batches {xj} ⇠ ↵ and {yj} ⇠ � indexed by j 2 [N ]
Obtain the amortized prediction of the conjugate x̃'(yj)
Fine-tune the prediction by numerically solving x̆(yj) = CONJUGATE(f, yj , xinit = x̃'(yj))
Update the potential with a gradient estimate of the dual in eq. (5), i.e. r✓V
Update the amortization model with a gradient estimate of a loss from sect. 3, i.e. r'L

end while

return optimal dual potentials f✓ and conjugate amortization model x̃'

3.2 CONJUGATE AMORTIZATION LOSS CHOICES

°2 0 2
x

0

4

/ krJf (x)k22
Cycle

Jf (x; y)
Objective

kx� x?(y)k22
Regression

x
?(y)

Figure 1: Conjugate amortization losses.

We now turn to the design choice of what loss to optimize
so that the conjugate amortization model x̃' best-predicts
the solution to the conjugate. In all cases, the loss is dif-
ferentiable and ' is optimized with a gradient-based op-
timizer. I present an amortization perspective of methods
not previously presented as amortization methods, which
is useful to help think about improving the amortized pre-
dictions with the fine-tuning and exact solvers in sect. 4.
Figure 1 illustrates the main loss choices.

3.2.1 OBJECTIVE-BASED AMORTIZATION

Nhan Dam et al. (2019) propose to make the amortized prediction optimal on the conjugation ob-
jective Jf from eq. (3) across samples from �, i.e.:

min
'

Lobj(') where Lobj(') := E
y⇠�

Jf (x̃'(y); y). (6)

We refer to Lobj as objective-based amortization and solve eq. (6) by taking gradient steps r'Lobj

using a Monte-Carlo estimate of the expectation.

Remark 3 The maximin method proposed in Makkuva et al. (2020, theorem 3.3) is equivalent to
maximizing an upper-bound to the dual loss V with respect to ✓ of a potential f✓ and minimizing
the objective-based amortization loss Lobj with respect to ' of an amortization model x̃' := rg'.
Their formulation replaces the exact conjugate x̆ in eq. (4) with an approximation x̃', i.e.:

max
✓

min
'

VMM(✓,') where VMM(✓,') := � E
x⇠↵

[f✓(x)] + E
y⇠�

[Jf✓ (x̃'(y); y)]. (7)

Makkuva et al. (2020) propose to optimize VMM with gradient ascent-descent steps. For optimizing
✓, VMM(✓,') is an upper bound on the true dual objective V(✓) as discussed in remark 2 with
equality if and only if x̃' = x̆. Evaluating the inner optimization step is exactly the objective-
based amortization update, i.e., r'VMM(✓,') = r'Lobj(') = r'Jf✓ (x̃'(y); y).

Remark 4 Suboptimal predictions of the conjugate often leads to a divergent upper bound on V(✓).
Makkuva et al. (2020, algorithm 1) propose to fix this by running more updates on the amortization
model. In sect. 4, I propose fine-tuning as an alternative to obtain a near-exact conjugates.

3.2.2 FIRST-ORDER OPTIMALITY AMORTIZATION: CYCLE CONSISTENCY AND W2GN

An alternative to optimizing the dual objective directly as in eq. (6) is to optimize for the first-order
optimality condition. Eq. (3) is an unconstrained minimization problem, so the first-order optimality
condition is that the derivative of the objective is zero, i.e. rxJf (x; y) = rxf(x) � y = 0. The
conjugate amortization model can be optimized for the residual norm of this condition with

min
'

Lcycle(') where Lcycle(') := E
y⇠�

krxJf (x̃'(y); y)k22 = E
y⇠�

krxf(x̃'(y))� yk22. (8)

4
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Insight: inaccurate predictions are still useful

Concern: inaccurate predictions of the conjugate give a biased estimation of the OT objective
Solution: optimality conditions can be checked, prediction can be fine tuned

we know the true conjugate optimization problem, use existing solvers for it
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Wasserstein-2 benchmark results
Takeaway: amortization choice important, fine-tuning significantly helps
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Table 1: Comparison of L2-UVP on the high-dimensional tasks from the Wasserstein-2 benchmark
by Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and stan-
dard deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam

consistently improves the quality of the learned potential.

Baselines from Korotin et al. (2021a)
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

*[W2] Cycle None 0.1 0.7 2.6 3.3 6.0 7.2 2.0 2.7
*[MMv1] None Adam 0.2 1.0 1.8 1.4 6.9 8.1 2.2 2.6
*[MMv2] Objective None 0.1 0.68 2.2 3.1 5.3 10.1 3.2 2.7

*[MM] Objective None 0.1 0.3 0.9 2.2 4.2 3.2 3.1 4.1

Potential model: the input convex neural network described in app. B.3 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

Cycle None 0.28 ±0.09 0.90 ±0.11 2.23 ±0.20 3.03 ±0.06 5.32 ±0.14 8.79 ±0.16 5.66 ±0.45 4.34 ±0.14
Objective None 0.27 ±0.09 0.78 ±0.12 1.78 ±0.26 2.00 ±0.11 >100 >100 >100 >100

Cycle L-BFGS 0.26 ±0.09 0.77 ±0.11 1.63 ±0.28 1.15 ±0.14 2.02 ±0.10 4.48 ±0.89 1.65 ±0.10 5.93 ±9.43
Objective L-BFGS 0.26 ±0.09 0.79 ±0.12 1.63 ±0.30 1.12 ±0.11 1.92 ±0.19 4.40 ±0.79 1.64 ±0.11 2.24 ±0.13

Regression L-BFGS 0.26 ±0.09 0.78 ±0.12 1.64 ±0.29 1.14 ±0.12 1.93 ±0.20 4.41 ±0.74 1.69 ±0.11 2.21 ±0.15

Cycle Adam 0.26 ±0.09 0.79 ±0.11 1.62 ±0.29 1.14 ±0.12 1.95 ±0.21 4.55 ±0.62 1.88 ±0.26 >100
Objective Adam 0.26 ±0.09 0.79 ±0.14 1.62 ±0.31 1.08 ±0.14 1.89 ±0.19 4.23 ±0.76 1.59 ±0.12 1.99 ±0.15

Regression Adam 0.35 ±0.07 0.81 ±0.12 1.61 ±0.32 1.09 ±0.11 1.85 ±0.20 4.42 ±0.68 1.63 ±0.08 1.99 ±0.16

Potential model: the non-convex neural network (MLP) described in app. B.4 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

Cycle None 0.05 ±0.00 0.35 ±0.01 1.51 ±0.08 >100 >100 >100 >100 >100
Objective None >100 >100 >100 >100 >100 >100 >100 >100

Cycle L-BFGS >100 >100 >100 >100 >100 >100 >100 >100
Objective L-BFGS 0.03 ±0.00 0.22 ±0.01 0.60 ±0.03 0.80 ±0.11 2.09 ±0.31 2.08 ±0.40 0.67 ±0.05 0.59 ±0.04

Regression L-BFGS 0.03 ±0.00 0.22 ±0.01 0.61 ±0.04 0.77 ±0.10 1.97 ±0.38 2.08 ±0.39 0.67 ±0.05 0.65 ±0.07

Cycle Adam 0.18 ±0.03 0.69 ±0.56 1.62 ±2.82 >100 >100 >100 >100 >100
Objective Adam 0.06 ±0.01 0.26 ±0.02 0.63 ±0.07 0.81 ±0.10 1.99 ±0.32 2.21 ±0.32 0.77 ±0.05 0.66 ±0.07

Regression Adam 0.22 ±0.01 0.28 ±0.02 0.61 ±0.07 0.80 ±0.10 2.07 ±0.38 2.37 ±0.46 0.77 ±0.06 0.75 ±0.09

Improvement factor over prior work 3.3 3.1 3.0 1.8 2.7 1.5 3.0 4.4

Table 2: Comparison of L2-UVP on the CelebA64 tasks from the Wasserstein-2 benchmark by
Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and standard
deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam con-

sistently improves the quality of the learned potential. The ConvICNN64 and ResNet potential
models are from Korotin et al. (2021a), and app. B.5 describes the (non-convex) ConvNet model.

Amortization loss Conjugate solver Potential Model Early Generator Mid Generator Late Generator

*[W2] Cycle None ConvICNN64 1.7 0.5 0.25
*[MM] Objective None ResNet 2.2 0.9 0.53

*[MM-R†] Objective None ResNet 1.4 0.4 0.22

Cycle None ConvNet >100 26.50 ±60.14 0.29 ±0.59
Objective None ConvNet >100 0.29 ±0.15 0.69 ±0.90

Cycle Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.04
Cycle L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.00

Objective Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.05
Objective L-BFGS ConvNet 0.61 ±0.01 0.20 ±0.00 0.09 ±0.00

Regression Adam ConvNet 0.66 ±0.01 0.21 ±0.00 0.12 ±0.00
Regression L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.01

Improvement factor over prior work 2.3 2.0 2.4
†the reversed direction from Korotin et al. (2021a), i.e. the potential model is associated with the � measure

6 DEMONSTRATIONS ON SYNTHETIC DATA

I lastly demonstrate the stability of amortization and fine-tuning as described in algorithm 1 to learn
optimal transport maps between many 2d synthetic settings considered in the literature. In all of
these settings, I instantiate ICNN and MLP architectures and use regression-based amortization
with L-BFGS fine-tuning. Figures 3 to 5 show the settings considered in Makkuva et al. (2020) and
Rout et al. (2021), and fig. 6 shows the conjugate objective landscapes. Figure 7 shows maps learned
on synthetic settings from Huang et al. (2020). App. D contains more experimental details here.
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Learning flows via continuous OT
Continuous OT for flows:
1. Works only from samples (no likelihoods needed)
2. No need to explicitly enforce invertibility
3. No need to compute the log-det of the Jacobian

Published as a conference paper at ICLR 2021

make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
all quantities of interest.

In terms of the benefits of parameterizing a flow as a gradient field, the convex potential is an
Rd

! R function, which is different from most existing discrete-time flows which are Rd
! Rd.

This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.

2 BACKGROUND: NORMALIZING FLOWS AND OPTIMAL TRANSPORT

Normalizing flows are characterized by a differentiable, invertible neural network f such that the
probability density of the network’s output can be computed conveniently using the change-of-
variable formula

pY (f(x)) = pX(x)

����
@f(x)

@x

����
�1

() pY (y) = pX(f�1(y))

����
@f

�1(y)

@y

���� (1)

where the Jacobian determinant term captures the local expansion or contraction of the density near
x (resp. y) induced by the mapping f (resp. f

�1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.

2

📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.
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Conjugate amortization+fine-tuning in OTT
📚 Optimal Transport Tools. Cuturi et al., 2022. github.com/ott-jax/ott
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https://github.com/ott-jax/ott


OT problems (Monge maps, dual potentials)

This talk: amortized optimization for OT

𝜓
𝑐
𝑦 ≝ inf

𝑥

 𝜓 𝑥 + 𝑐(𝑥, 𝑦)

𝑐 𝑥, 𝑦 = inf
𝛾∈𝒫(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡

📚 Supervised training of conditional Monge maps. Bunne et al., NeurIPS 2022.
📚 Meta Optimal Transport. Amos et al., ICML 2023.

The 𝒄-transform (e.g., the convex conjugate)

Lagrangian costs (e.g., geodesic distances)
📚 Deep Generalized Schrödinger Bridge. Liu et al., NeurIPS 2022.
📚 Riemannian metric learning via optimal transport. Scarvelis and Solomon, ICLR 2023.
📚 Neural Lagrangian Schrödinger Bridge. Koshizuka and Sato, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, 2023.
📚 A Computational Framework for Solving Wasserstein Lagrangian Flows. Neklyudov et al., 2023.
📚 Generalized Schrödinger Bridge Matching. Liu et al., 2023.

📚 Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020.
📚 Wasserstein-2 Generative Networks. Korotin et al., ICLR 2021.
📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

̂𝜓 𝛼, 𝛽, 𝑐 ∈ argsup

𝜓∈𝐿1 𝛼

∫

𝒴

𝜓
𝑐
𝑦 𝑑𝛽 𝑦 −∫

𝒳

𝜓 𝑥 𝑑𝛼 𝑥



From Euclidean to Lagrangian costs
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📚 Deep Generalized Schrödinger Bridge. Liu et al., NeurIPS 2022.
📚 Riemannian metric learning via optimal transport. Scarvelis and Solomon, ICLR 2023.
📚 Neural Lagrangian Schrödinger Bridge. Koshizuka and Sato, ICLR 2023.
📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, 2023.
📚 A Computational Framework for Solving Wasserstein Lagrangian Flows. Neklyudov et al., 2023.
📚 Generalized Schrödinger Bridge Matching. Liu et al., 2023.

source source: Scarvelis and Solomon source: Liu et al., 2023.

𝑐 𝑥, 𝑦 = inf
𝛾∈𝒞(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡𝑐 𝑥, 𝑦 = 𝑥− 𝑦

2

2

Squared Euclidean
Lagrangian (e.g., geodesics)

incorporates physical knowledge from the world (e.g., obstacles, manifolds)

https://www.youtube.com/watch?v=eakKfY5aHmY


Expressivity of Lagrangian costs
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ℒ 𝛾
𝑡
, ̇𝛾

𝑡
=
1

2
̇𝛾
𝑡 2

2

Euclidean  𝑐 𝑥, 𝑦 = 𝑥− 𝑦
2

2 

𝑐 𝑥, 𝑦 = inf
𝛾∈𝒞(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡

📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, 2023.    (and many others!)

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
=
1

2
̇𝛾
𝑡 2

2
−𝑈(𝛾

𝑡
)

Potential term (e.g., obstacles)

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
=
1

2
̇𝛾
𝑡 𝐴(𝛾

𝑡
)

2

Riemannian geodesics

easy, closed-form computation challenging in general, no known closed-form solutions



Our approach: amortize the geodesic path!
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ℒ 𝛾
𝑡
, ̇𝛾

𝑡
=
1

2
̇𝛾
𝑡 2

2

Euclidean  𝑐 𝑥, 𝑦 = 𝑥− 𝑦
2

2 

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
=
1

2
̇𝛾
𝑡 2

2
−𝑈(𝛾

𝑡
) ℒ 𝛾
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, ̇𝛾

𝑡
=
1

2
̇𝛾
𝑡 𝐴(𝛾

𝑡
)

2

📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, 2023.

Potential term (e.g., obstacles) Riemannian geodesics

easy, closed-form computation challenging in general, no known closed-form solutions

̃𝛾
𝜃
𝑥, 𝑦 ≈ 𝛾

⋆
𝑥, 𝑦 = arginf

𝛾∈𝒫(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡

enables us to solve the static OT formulation



Excels at solving OT and learning metrics
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📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, 2023.    (and many others!)



Amortized optimization beyond OT 🚀
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (amortized VI, VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport (slicing, conjugation, Meta Optimal Transport, Lagrangian costs)

📚 Foundations and Trends® in Machine Learning
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Kantorovich dual

𝒄-transform

Squared Euclidean Lagrangian (e.g., geodesics)
Costs

amortize this

amortize that

and this
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