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Motivation: training models for downstream tasks

Challenge: models trained with prediction losses may struggle on
downstream tasks

Why? objective mismatch, approximation errors, limited capacity, data

Our contribution: a task-driven end-to-end metric learning framework for

training prediction models. This provides:

A method to train models for better performance on the downstream task

A method tolearn aloss function using task information, which is then used
to train prediction model

A model trained with MSE may still perform
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Examples of two-stage settings

models/predictions downstream tasks
item demands/utilities | budget allocation
MDP state transitions | = optimal control

future stock prices —gp | portfolio optimization
next word (LLMs) — chatbots (RLHF)

(MSE, likelihood) Lyad (0) 75 Lioal (0)

Background: task-based learning

€ Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurlPS 2017.
€ Decision-Focused Learning for Combinatorial Optimization. Wilder et al., AAAI 2019.
€& Smart "Predict, then optimize.” Elmachtoub and Grigas, Management Science 2022.

Key idea: optimize the model with the task loss

input model prediction pred
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Drawbacks of standard task-based losses

N e
end-to-end learning
1. The model may overfit to the task and be unable to generalize to other tasks

e.g., one task may care about colors while another may care about edges
2. The model may forget how to predict in the original space
e.g., the task loss may just care about magnitudes rather than absolute values

Our paper: task-based metric learning (TaskMet)

(parameterized)
input model prediction prediction loss
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Insight: use the task signal to shape the metric of a prediction loss, not the model
Why?

1. Retains the prediction task: the metric emphasizes the important parts

2. Generalization: the metric can be controlled to not deviate too much

Generalized Mahalanobis loss as the prediction loss
We use a generalized Mahalanobis loss parameterized by the metric A¢

zpredw’ ¢)= E,, b [er(a:) — yH?\qﬁ(a;)] =Lk, D (fo(z) — y)TA¢(x)(f9(m) —y)]

The metric A 4 (1), is a

« positive semi-definitive matrix

« ofdimnxn,wherenis dimension of prediction space

« parameterized by ¢ and conditioned on the input features x

The metric captures:
* Relative importance of features: up/down-weighting based on importance

 Relative importance of samples: via heteroscedastic metric A(x)
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End-to-end metric learning for model learning

 The key idea of the method is to learn an optimal metric end-to-end
with a given task, which is then used to learn model via prediction loss.
 We use bilevel optimization for the metric and model learning:

P* = arg;nin Lol (07(9))

Where 9*(¢) — a’rg;n‘in ’Cpl‘ed (97 ¢) — VH’CpI’ed(H? ¢> |9:9*(¢) — O

Implicit differentiation for end-to-end metric learning

We need calculate V £y 1 (0%(9) ), to find ¢*

v¢£task (9* (¢)) — vHﬁtask(g) ‘ .(7 7 9)
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calculate using Implicit
Function theorem

0L red(0,0)\ 1 0L 10q(0,0)
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We approximately solve this with a conjugate gradient method

arg min Lpred(ﬁ, ®) Y = f@*(qb) (z)
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/_\ x: features
Ad b*(9) Lo |1

A¢: metric
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Experiments: model-based RL

€ Control-oriented model-based reinforcement learning with implicit differentiation. Nikishin et al., AAAI 2022.

TaskMet

Task: find the optimal Q value function

Environment: cartpole (#state dimensions: 4, #action dimensions: 2)

Get the maximum return using trajectories from learned dynamics model
Experiment : add noisy/distracting dimensions to the state space

Metric A: diagonal and not conditioned on x

Result: the learned metric downweights the noisy dimensions, allowing
the prediction model to use its capacity on task relevant features only
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Metric value is highest for the pole angle — most indicative of the reward

Experiments: decision-oriented model learning

€ Decision-Focused Learning without Differentiable Optimization. Shah et al., NeurlPS 2022.

Setup: model predictions parameterize a decision-making optimization problem
Example: portfolio optimization

decision quality . .
(negated) portfolio returns Portfolio allocation

Crask @) = Eayeplol=*(5(2)

1 stock features
predicted stock price

model

Cubic setting

Predict utilities with a linear model for a downstream maximization task
Severe modeling errors — must focus on high-utility points
Takeaway: our learned metric tilts the model to control the maximum prediction

B TaskMet Bmse M Ground Truth
normalized decision quality (O=random, 1=oracle) 3 -
weight of MSE term Problems
Method o Cubic Budget  Portfolio
MSE —0.96+0.02 0.54+0.17 0.33-+£0.03

DFL 0 0.61+0.74
DFL 10 0.6240.74 0.81+0.11  0.34+0.03
LODL 0 0.96+£0.005  0.844+0.105 0.17+0.05
LODL 10 —0.95+0.005 0.584+0.14  0.30+0.03

TaskMet 0.96+0.005  0.83+0.12 0.33-+0.03

0.91+0.06 0.25+0.02

MSE puts equal

TaskMet prioritizes
weight on all points

accurate prediction
of high utility points




