
weight of MSE term

normalized decision quality (0=random, 1=oracle)

Motivation: training models for downstream tasks
Challenge: models trained with prediction losses may struggle on
downstream tasks
Why? objective mismatch, approximation errors, limited capacity, data

Dishank Bansal, Ricky T. Q. Chen, Mustafa Mukadam, Brandon Amos
TaskMet: Task-Driven Metric Learning for Model Learning

click-through rates

item demands/utilities

MDP state transitions

future stock prices

recommendations

budget allocation

optimal control

portfolio optimization

models/predictions downstream tasks

next word (LLMs) chatbots (RLHF)

Examples of two-stage settings

ℒ
task

(𝜃)≠ℒ
pred

(𝜃)(MSE, likelihood)

Background: task-based learning

Key idea: optimize the model with the task loss

Drawbacks of standard task-based losses
1. The model may overfit to the task and be unable to generalize to other tasks
e.g., one task may care about colors while another may care about edges
2. The model may forget how to predict in the original space
e.g., the task loss may just care about magnitudes rather than absolute values

📚 Task-based end-to-end model learning in stochastic optimization. Donti, Amos, and Kolter, NeurIPS 2017.
📚Decision-Focused Learning for Combinatorial Optimization. Wilder et al., AAAI 2019.
📚 Smart ”Predict, then optimize.” Elmachtoub and Grigas, Management Science 2022.

𝑓
𝜃
(𝑥)

𝑥 ̂𝑦

ℒ
pred

ℒ
task

modelinput prediction

end-to-end learning

Our contribution: a task-driven end-to-end metric learning framework for
training prediction models. This provides:
• A method to train models for better performance on the downstream task
• A method to learn a loss function using task information, which is then used

to train prediction model

Our paper: task-based metric learning (TaskMet)

Insight: use the task signal to shape the metric of a prediction loss, not the model
Why?
1. Retains the prediction task: the metric emphasizes the important parts
2. Generalization: the metric can be controlled to not deviate too much

Generalized Mahalanobis loss as the prediction loss

ℒ
pred

𝜃, 𝜙 ≔ Ε
𝑥,𝑦 ~ 𝐷

𝑓
𝜃
𝑥 − 𝑦

Λ
𝜙
(𝑥)

2
= Ε

𝑥,𝑦 ~ 𝐷
𝑓
𝜃
𝑥 − 𝑦

𝑇
Λ
𝜙
(𝑥) 𝑓

𝜃
𝑥 − 𝑦

The metric Λ
𝜙
𝑥 , is a

• positive semi-definitive matrix
• of dim 𝑛×𝑛, where 𝑛 is dimension of prediction space
• parameterized by 𝜙 and conditioned on the input features 𝑥

The metric captures:
• Relative importance of features: up/down-weighting based on importance
• Relative importance of samples: via heteroscedastic metric Λ 𝑥

End-to-end metric learning for model learning

• The key idea of the method is to learn an optimal metric end-to-end
with a given task, which is then used to learn model via prediction loss.

• We use bilevel optimization for the metric and model learning:

𝜙
⋆
≔ argmin

𝜙

ℒ
task

(𝜃
⋆
𝜙)

where 𝜃
⋆
𝜙 = argmin

𝜃

ℒ
pred

(𝜃, 𝜙) ⟹∇
𝜃
ℒ
pred

𝜃, 𝜙 ∣
𝜃=𝜃

⋆
𝜙

= 0

𝑓
𝜃
(𝑥)

𝑥 ̂𝑦 ℒ
pred

modelinput prediction

ℒ
task

(parameterized)
prediction loss

Predict utilities with a linear model for a downstream maximization task
Severe modeling errors — must focus on high-utility points
Takeaway: our learned metric tilts the model to control the maximum prediction

Experiments: model-based RL

Task: find the optimal Q value function
Environment: cartpole (#state dimensions: 4, #action dimensions: 2)
Get the maximum return using trajectories from learned dynamics model
Experiment : add noisy/distracting dimensions to the state space
Metric Λ: diagonal and not conditioned on 𝑥
Result: the learned metric downweights the noisy dimensions, allowing
the prediction model to use its capacity on task relevant features only

1 2 3 4 5 6 7 8 9 10 11 12 ...
state dimension

16

32

64

128

256

512

#
d
is
tr

ac
to

rs

Metric value is highest for the pole angle — most indicative of the reward

Metric
value

High

Low

16 32 64 128 256 512

Distractors

100

200

300

400

500

E
pi

so
de

R
et

ur
n

TaskMet OMD MLE

Setup: model predictions parameterize a decision-making optimization problem
Example: portfolio optimization

∇
𝜙
ℒ
task

𝜃
⋆
𝜙 = ∇

𝜃
ℒ
task

𝜃 ∣
𝜃=𝜃

⋆
𝜙

⋅

⏟

𝜕 𝜃
⋆
𝜙

𝜕𝜙

calculate using Implicit
Function theorem

∇
𝜙
ℒ
task

𝜃
⋆
𝜙 = − ∇

𝜃
ℒ
task

𝜃 ⋅

𝜕ℒ
pred

𝜃, 𝜙

𝜕2 𝜃

−1

⋅

𝜕ℒ
pred

𝜃, 𝜙

𝜕𝜙 𝜕𝜃
∣
𝜃=𝜃

⋆
𝜙

We need calculate ∇
𝜙
ℒ
task

𝜃
⋆
𝜙 , to find 𝜙⋆

We approximately solve this with a conjugate gradient method

Experiments: decision-oriented model learning

📚 Control-oriented model-based reinforcement learning with implicit differentiation. Nikishin et al., AAAI 2022.

TaskMet: Task-Driven Metric Learning for Model Learning

is a learned symmetric Positive semidefinite (PSD) matrix. LODL also uses Eq. (1) to learn the model parameters, but
using LODL n(ŷn) ⇡ Ltask(ŷn)

Table 2. Prediction Error of different methods
Problems

Method Cubic Budget Allocation Portfolio Optimization

MSE 2.30 ± 0.03 4.32e�4 ± 2.35e�4 4.03e�4 ± 0.24e�4

DFL (↵ = 0) 2.89 ± 0.32 7.17e�3 ± 5.83e�3 0.826 ± 0.081
DFL (↵ = 10) 2.41 ± 0.05 8.09e�4 ± 12.07e�4 5.18e�4 ± 0.46e�4

LODL-Quadratic (↵ = 0) 2.88 ± 0.030 3.59e�3 ± 1.29e�3 5.56e�3 ± 9.95e�4

LODL-Quadratic(↵ = 10) 2.29 ± 0.19 5.05e�4 ± 1.88e�4 4.31e�4 ± 0.31e�4

TaskMet 2.89 ± 0.03 9.74e�4 ± 13.79e�4 4.69e�4 ± 0.56e�4

B.3. Model-based reinforcement learning

Following is the derivation of final gradient to learn � from Eq. (11). Using the implicit function theorem and using it on
Eq. (11), we get the following

r�Ltask =r!Ltask(!
?) · @!

?

@✓?
· @✓

?

@�
(13)

=r!Ltask(!
?) ·

✓
@L(!, ✓?)

@2!

◆�1

· @L(!, ✓?)

@✓@!

�����
!=!?(✓?)

·
✓
@Lpred(✓,�)

@2✓

◆�1

·
@Lpred(✓,�)

@�@✓

�����
✓=✓?(�)

(14)

Model Q* LossMetric
Planning ActingLearning

IFT IFT Backprop

OMD

TaskMet

Figure 5. OMD (Nikishin et al., 2022) uses planning task loss to learn the model parameters using implicit gradients. TaskMet add one
more optimization step over OMD and instead of learning the model parameters using task loss, we learn the metric which then is used to
learn model parameters.

We also consider a setting with reduced model capacity, where the network is under-parametrized, forcing the model to
prioritize how it allocates its capacity. In this scenario, we employ a full conditional metric, denoted as ⇤� = ⇤�(x), which
enables the metric to weigh dimensions and state-action pairs differently. We conducted the experiment using a model size
of 3 hidden units in the layer. As depicted in Fig. 6, TaskMet achieves a better return on evaluation compared to MLE
and OMD. Additionally, it is evident that TaskMet achieves a lower MSE on the model predictions compared to OMD,
indicating that learning with the metric also contributes to a better dynamics model.

C. Implementation Details

C.1. Source code

Upon request, we will provide an anonymized version of our code in the rebuttal.

C.2. Decision Oriented Model Learning

We replicated our experiments using the codebase provided by Shah et al. (2022), which can be found at github. To ensure
consistency, we used the same hyperparameters as mentioned in the code or article for the baselines. Our metric learning

8

ℒ
task

𝜃 ≔ Ε
𝑥,𝑦∼𝐷

[𝑔(𝑧
⋆

̂𝑦
𝜃
(𝑥))]

predicted stock price
model

portfolio allocation

stock features

decision quality
(negated) portfolio returns

📚Decision-Focused Learning without Differentiable Optimization. Shah et al., NeurIPS 2022.

Implicit differentiation for end-to-end metric learning

We use a generalized Mahalanobis loss parameterized by the metric Λ
𝜙

°3

0

3

y(x)

°1 0 1

x

0
1
2

§(x)

TaskMet MSE Ground Truth

MSE puts equal
weight on all points

TaskMet prioritizes
accurate prediction
of high utility points

A model trained with MSE may still perform
suboptimally on the downstream task. TaskMet
trains the model to achieve minimal task loss.

ca
rt

 p
os

it
io

n

ca
rt

 v
el

oc
it

y

po
le

 a
ng

le

po
le

 a
ng

ul
ar

ve

lo
ci

ty

noise →

Cubic setting

TaskMet: Task-Driven Metric Learning for Model Learning

Dishank Bansal⇤ Ricky T. Q. Chen Mustafa Mukadam Brandon Amos
Meta

Abstract

Deep learning models are often used with some downstream task. Models solely
trained to achieve accurate predictions may struggle to perform well on the de-
sired downstream tasks. We propose using the task loss to learn a metric which
parameterizes a loss to train the model. This approach does not alter the optimal
prediction model itself, but rather changes the model learning to emphasize the
information important for the downstream task. This enables us to achieve the best
of both worlds: a prediction model trained in the original prediction space while
also being valuable for the desired downstream task. We validate our approach
through experiments conducted in two main settings: 1) decision-focused model
learning scenarios involving portfolio optimization and budget allocation, and 2)
reinforcement learning in noisy environments with distracting states. The source
code to reproduce our experiments is available here.

1 Introduction

true model MSE

TaskMet

DFL

model space
task

loss

Figure 1: The MSE results in a model
close to the true model in the predic-
tion space, but may give poor task per-
formance. Decision-focused learning

(DFL) methods optimize the task loss,
but may deviate from the prediction
space. TaskMet optimizes the task loss
while retaining the prediction task.

Machine learning models for prediction are typically trained
to maximize the likelihood on a training dataset. While the
models are capable of universally approximating the under-
lying data generating process to predict the output, they are
prone to approximation errors due to limited training data and
model capacity. These errors lead to suboptimal performance
in downstream tasks where the models are used. Furthermore,
even though a model may appear to have reasonable predictive
performance on the metric and training data it was trained on,
such as the mean squared error, employing the model for a
downstream task may require the model to focus on different
parts of the data that were not emphasized in the training for
predictive performance. Overcoming the discrepancy between
the model’s prediction task and performance on a downstream
task is the focus of our paper.

Examples of settings where the model’s prediction loss Lpred is mis-matched from the downstream
task Ltask include the following, which table 1 also summarizes:

1. the portfolio optimization setting from Wilder et al. [2019], which predicts the expected
returns from stocks for a financial portfolio. Here, the Lpred is the MSE and Ltask is from the
regret of running a portfolio optimization problem on the output;

2. the allocation setting from Wilder et al. [2019], which predicts the value of items that are
being allocated, e.g. click-through-rates for recommender systems. Here, Lpred is the MSE
and Ltask measures the result of allocating the highest-value items.

⇤Work done as part of the Meta AI residency program.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

y0

y1
y?

y0

y1
y?

y0

y1
y?

⇤�(x)


1 0
0 1

� 
2 0
0 1

� 
10 0
0 1

�

Figure 2: Examples of the Mahalanobis loss from eq. (3) in a 2-dimensional prediction task. The
model’s loss is zero only when ŷ = y

?. Here, the metric ⇤�(x) increases the weighting on the y0

component of the loss and thus emphasizes the predictions along this dimension.

Many methods can be seen as hand-crafted ways of setting a Mahalanobis metric, including: 1)
normalizing the input data by making the metric appropriately scale the dimensions of the prediction,
2) re-weighting the samples as in Donti et al. [2017], Lambert et al. [2020] by making the metric
scale each sample based on some importance factor, or 3) using other performance measures, such as
the value gradient in Voelcker et al. [2022].

More generally beyond these, the Mahalanobis metrics help emphasize the:

1. relative importance of dimensions. the metric allows for down- or up-weighting different
dimensions of the prediction space by changing the diagonal entries of the metric. Figure 2
illustrates this.

2. correlations in the prediction space. the quadratic nature of the loss with the metric allows
the model to be aware of correlations between dimensions in the prediction space.

3. relative importance of samples. heteroscedastic metrics ⇤(x) enable different samples to be
weighted differently for the final expected cost over the dataset.

Without more information, parameterizing and specifying the best metric for learning the model
is challenging as it involves the subproblem of understanding the relative importance between
predictions. We suggest that when it is available, the downstream task information characterizing the
overall model’s performance can be used to learn a metric in the prediction space. Hence, learning
model parameters with a metricized loss can be seen as conditioning the learning problem. The ability
to learn the metric end-to-end enables the task to condition the learning of the model in any or all of
the three ways described above. This approach offers an interpretable method for the task to guide the
model learning, in contrast to relying solely on task gradients for learning model parameters, which
may or may not align effectively with the given prediction task.

3.2 End-to-end metric learning for model learning

The key idea of the method is to learn a metric end-to-end with a given task, which is then used
to train the prediction model as shown in eq. (3). The learning problem of the metric and model
parameters are formulated as the bilevel optimization problem

�
? := arg min

�
Ltask(✓

?(�)), (4)

subject to ✓
?(�) = arg min

✓
Lpred(✓,�) (5)

where � and ✓ are (respectively) the metric and model parameters, Lpred is the metricized prediction
loss (eq. (3)) to train the prediction model, and Ltask is the task loss defined by the task at hand (which
could be another optimization problem, e.g. eq. (8), or another learning task, e.g. eq. (10).

Gradient-based learning. We learn the optimal metric ⇤�? with the gradient of the task loss, i.e.
r�Ltask(✓?(�)). Using the chain rule and assuming we have the optimal ✓?(�) for some metric

4

⇤� ✓?(�) Ltask

arg min
✓

Lpred(✓,�) ŷ = f✓?(�)(x)

@✓
?(�)

@�
via IFT r✓Ltask

x: features
y: targets
⇤�: metric
Lpred(✓,�) := E

h
kf✓(x)� yk2⇤�(x)

i

Figure 3: TaskMet learns a metric for predictions with the gradient from a downstream task loss.

Algorithm 1 TaskMet: Task-Driven Metric Learning for Model Learning
Models: predictor f✓ and metric ⇤� with initial parameterizations ✓ and �

while unconverged do
// approximate ✓

?(�) given the current metric ⇤�

for i in 1 . . .K do
✓ update(✓,r✓Lpred(✓,�)) // fit the predictor f✓ to the current metric loss (eq. (3))

end for
� update(�,r�Ltask) // update the metric ⇤� with the task loss (eq. (6))

end while
return optimal predictor f✓ and metric ⇤� solving the bi-level problem in eq. (4)

parameterization �, this derivative is

r�Ltask(✓
?(�)) = r✓Ltask(✓)

��
✓=✓?(�)

· @✓
?(�)

@�
(6)

To calculate the termr�Ltask(✓?(�)), we need to compute two gradient terms: r✓Ltask(✓)
��
✓=✓?(�)

and @✓
?(�)/@�. The former can be estimated in standard way since Ltask(✓) is an explicit function

of ✓. However, the latter cannot be directly calculated because ✓
? is a function of optimization

problem which is multiple iterations of gradient descent, as shown in eq. (5). Backpropping through
multiple iterations of gradient descent can be computationally expensive, so we use the implicit
function theorem (appendix A) on the first-order optimality condition of eq. (5), i.e. @Lpred(✓,�)

@✓ = 0.
Combining these, r�Ltask(✓?(�)) can be computed with

r�Ltask(✓
?(�)) = r✓Ltask(✓) ·�

✓
@
2Lpred(✓,�)

@✓2

◆�1
@
2Lpred(✓,�)

@�@✓

�����
✓=✓?(�)| {z }

@✓?/@�

(7)

The implicit derivatives in eq. (7) may be challenging to compute or store in memory because the
Hessian term @

2Lpred(✓,�)/@✓2 is the Hessian of the prediction loss with respect to the model’s
parameters. Approaches such as Lorraine et al. [2020] are able to scale related implicit differentiation
problems to models with millions of hyper-parameters. The main insight is that the Hessian does
not need to be explicitly formed or inverted and the entire implicit derivative term needed for
backpropagation can be obtained with an implicit solver. We follow Blondel et al. [2022] and
compute the implicit derivative by using conjugate gradient on the normal equations.

4 Experiments

We evaluate our method in two distinct settings: 1) when the downstream task involves an optimization
problem parameterized by the prediction model output, and 2) when the downstream task is another
learning task. For the first setting, we establish our baselines by replicating experiments from
previous works such as Shah et al. [2022] and Wilder et al. [2019]. These baselines encompass tasks
like portfolio optimization and budget allocation. In the second setting, we focus on model-based

5

𝜃
⋆
≔ argmin

𝜃

ℒ
task

𝜃 + 𝛼ℒ
pred

𝜃

