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Duality and continuous OT
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ABSTRACT

This paper focuses on computing the convex conjugate operation that arises when
solving Euclidean Wasserstein-2 optimal transport problems. This conjugation,
which is also referred to as the Legendre-Fenchel conjugate or c-transform, is
considered difficult to compute and in practice, Wasserstein-2 methods are limited
by not being able to exactly conjugate the dual potentials in continuous space.
To overcome this, the computation of the conjugate can be approximated with
amortized optimization, which learns a model to predict the conjugate. I show that
combining amortized approximations to the conjugate with a solver for fine-tuning
significantly improves the quality of transport maps learned for the Wasserstein-2
benchmark by Korotin et al. (2021a) and is able to model many 2-dimensional
couplings and flows considered in the literature.

1 INTRODUCTION

Optimal transportation (Villani, 2009; Ambrosio, 2003; Santambrogio, 2015; Peyré et al., 2019)
is a thriving area of research that provides a way of connecting and transporting between proba-
bility measures. While optimal transport between discrete measures is well-understood, e.g. with
Sinkhorn distances (Cuturi, 2013), optimal transport between continuous measures is an open re-
search topic actively being investigated (Genevay et al., 2016; Seguy et al., 2017; Taghvaei and
Jalali, 2019; Korotin et al., 2019; Makkuva et al., 2020; Fan et al., 2021; Asadulaev et al., 2022).
Continuous OT has applications in generative modeling (Arjovsky et al., 2017; Petzka et al., 2017;
Wu et al., 2018; Liu et al., 2019; Cao et al., 2019; Leygonie et al., 2019), domain adaptation (Luo
et al., 2018; Shen et al., 2018; Xie et al., 2019), barycenter computation (Li et al., 2020; Fan et al.,
2020; Korotin et al., 2021b), and biology (Bunne et al., 2021; 2022; Lübeck et al., 2022).

This paper focuses on estimating the Wasserstein-2 transport map between measures ↵ and � in
Euclidean space, i.e. supp(↵) = supp(�) = Rn with the Euclidean distance as the transport cost.
The Wasserstein-2 transport map, T̆ : Rn ! Rn, is the solution to Monge’s primal formulation:

T̆ 2 arg inf
T2T (↵,�)

E
x⇠↵

kx� T (x)k2, (1)

where T (↵,�) := {T : T#↵ = �} is the set of admissible couplings and the push-forward operator
# is defined by T#↵(B) := ↵(T�1(B)) for a measure ↵, measurable map T , and all measurable
sets B. T̆ exists and is unique under general settings, e.g. as in Santambrogio (2015, Theorem 1.17),
and is often difficult to solve because of the coupling constraints T . Almost every computational

method instead solves the Kantorovich dual, e.g. as formulated in Villani (2009, §5) and Peyré
et al. (2019, §2.5). This paper focuses on the dual associated with the negative inner product cost
(Villani, 2009, eq. 5.12), which introduces a dual potential function f : Rn ! R and solves:

“f 2 arg sup
f2L1(↵)

� E
x⇠↵

[f(x)]� E
y⇠�

[f?(y)] (2)

where L1(↵) is the space of measurable functions that are Lebesgue-integrable over ↵ and f
? is the

convex conjugate, or Legendre-Fenchel transform, of a function f defined by:

f
?(y) := � inf

x2X
Jf (x; y) with objective Jf (x; y) := f(x)� hx, yi. (3)

1

!⋆ = ∇ 9: (Brenier’s Theorem)



Solving Kantorovich’s dual with a neural net

2-wasserstein approximation via restricted convex potentials. Taghvaei and Jalali, 2019.
Three-Player Wasserstein GAN via Amortised Duality. Nhan Dam et al., IJCAI 2019.
Optimal transport mapping via input convex neural networks. Makkuva et al., ICML 2020.
Wasserstein-2 generative networks. Korotin et al., ICLR 2020.
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x̆(y) denotes an optimal solution to eq. (3). Even though the eq. (2) searches over functions in
L
1(↵), the optimal dual potential “f is convex (Villani, 2009, theorem 5.10). When one of the

measures has a density, Brenier (1991, theorem 3.1) and McCann (1995) relate “f to an optimal
transport map T̆ for the primal problem in eq. (1) with T̆ (x) = rx

“f(x), and the inverse to the
transport map is given by T̆

�1(y) = ry
“f?(y).

A stream of foundational papers have proposed methods to approximate the dual potential f

with a neural network and learn it by optimizing eq. (2): Taghvaei and Jalali (2019); Korotin
et al. (2019); Makkuva et al. (2020) parameterize f as an input-convex neural network (Amos et al.,
2017), which can universally represent any convex function with enough capacity (Huang et al.,
2020). Other works explore parameterizing f as a non-convex neural network (Nhan Dam et al.,
2019; Korotin et al., 2021a; Rout et al., 2021).

Efficiently solving the conjugation operation in eq. (3) is the key computational challenge to

solving the Kantorovich dual in eq. (2) and is an important design choice. Exactly computing
the conjugate as done in Taghvaei and Jalali (2019) is considered computationally challenging and
approximating it as in Korotin et al. (2019); Makkuva et al. (2020); Nhan Dam et al. (2019); Korotin
et al. (2021a); Rout et al. (2021) may be instable. Korotin et al. (2021a) fortifies this observation:

The [exact conjugate] solver is slow since each optimization step solves a hard subproblem for
computing [the conjugate]. [Solvers that approximate the conjugate] are also hard to optimize:
they either diverge from the start or diverge after converging to nearly-optimal saddle point.

In contrast to these statements on the difficulty of exactly estimating the conjugate operation,

I will show in this paper that computing the (near-)exact conjugate is easy. My key insight
is that the approximate, i.e. amortized, conjugation methods can be combined with a fine-tuning
procedure using the approximate solution as a starting point. Sect. 3 discusses the amortization
design choices and sect. 3.2.2 presents a new amortization perspective on the cycle consistency term
used in Wasserstein-2 generative networks (Korotin et al., 2019), which was previously not seen in
this way. Sect. 5 shows that amortizing and fine-tuning the conjugate results in state-of-the-art

performance in all of the tasks proposed in the Wasserstein-2 benchmark by Korotin et al.

(2021a). Amortization with fine-tuning also nicely models synthetic settings (sect. 6), including for
learning a single-block potential flow without using the likelihood.

2 LEARNING DUAL POTENTIALS: A CONJUGATION PERSPECTIVE

This section reviews the standard methods of learning parameterized dual potentials to solve eq. (2).
The first step is to re-cast the Kantorovich dual problem eq. (2) as being over a parametric family
of potentials f✓ with parameter ✓ as an input-convex neural network (Amos et al., 2017) or a more
general non-convex neural network. Taghvaei and Jalali (2019); Makkuva et al. (2020) have laid the
foundations for optimizing the parametric potentials for the dual objective with:
max

✓
V(✓) where V(✓) := � E

x⇠↵
[f✓(x)]� E

y⇠�
[f?

✓ (y)] = � E
x⇠↵

[f✓(x)]+ E
y⇠�

[Jf✓ (x̆(y))] . (4)

x̆(y) is the solution to the convex conjugate and eq. (4) assumes a finite solution to eq. (2) exists and
replaces the sup with a max. Taghvaei and Jalali (2019) show that the model can be learned, i.e. the
optimal parameters can be found, by taking gradient steps of the dual with respect to the parameters
of the potential, i.e. using r✓V . This derivative going through the loss and conjugation operation
can be obtained by applying Danskin’s envelope theorem (Danskin, 1966; Bertsekas, 1971) and
results in only needing derivatives of the potential:

r✓V(✓) = r✓


� E

x⇠↵
[f✓(x)] + E

y⇠�
[Jf✓ (x̆(y))]

�

= � E
x⇠↵

[r✓f✓(x)] + E
y⇠�

[r✓f✓(x̆(y))]
(5)

where x̆(y) is not differentiated through.

Assumption 1 A standard assumption is that the conjugate is smooth with a well-defined argmin.
This has been shown to hold when f is strongly convex, e.g. in Kakade et al. (2009), or when f is
essentially strictly convex (Rockafellar, 2015, theorem 26.3).
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Wasserstein-2 benchmark results
Takeaway: amortization choice important, fine-tuning significantly helps

HD benchmarks: Unexplained Variance Percentage (UVP, lower is better)

CelebA benchmarks: UVP

Do Neural Optimal Transport Solvers Work? Korotin et al., NeurIPS 2021.



Transport between synthetic measures



Learning flows via continuous OT
Continuous OT for flows:
1. Works only from samples (no likelihoods needed)
2. No need to explicitly enforce invertibility
3. No need to compute the log-det of the Jacobian
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make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
all quantities of interest.

In terms of the benefits of parameterizing a flow as a gradient field, the convex potential is an
Rd

! R function, which is different from most existing discrete-time flows which are Rd
! Rd.

This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.

2 BACKGROUND: NORMALIZING FLOWS AND OPTIMAL TRANSPORT

Normalizing flows are characterized by a differentiable, invertible neural network f such that the
probability density of the network’s output can be computed conveniently using the change-of-
variable formula

pY (f(x)) = pX(x)

����
@f(x)

@x

����
�1

() pY (y) = pX(f�1(y))

����
@f

�1(y)

@y

���� (1)

where the Jacobian determinant term captures the local expansion or contraction of the density near
x (resp. y) induced by the mapping f (resp. f

�1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.
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