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Components of AI systems
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📚 A path towards autonomous machine intelligence. LeCun, 2022.

LLMs and VLMs
Perceive text, images, video. Act via text responses.

Robotic systems
Perceive sensors, images. Act via motors.

Image source:



Acting and optimization-based reasoning
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📚 A path towards autonomous machine intelligence. LeCun, 2022.

𝑦
⋆
𝑥 ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

context (state of the world)cost

actions feasible actions

optimal action

Actor

LLMs and VLMs (for example)
𝑥 = prompt            𝑦 = response     𝑓  = response quality

Robotic systems (for example)
𝑥 = joint angles    𝑦 = torques        𝑓  = distance to goal

separate from this talk: learning cost, representations, constraints
Image source:



Where to obtain the optimization problem?

Brandon Amos Amortized optimization-based reasoning and AI 4

📚 A path towards autonomous machine intelligence. LeCun, 2022.

𝑦
⋆
𝑥 ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

context (state of the world)cost

actions feasible actions

optimal action

Actor

1. Manually specified given domain knowledge
     (mostly the focus of this talk)

2. Learned from a higher-level process
     (separate from this talk — differentiable optimization)

(3. A mixture of manually-specified and learned)Image source:



How to act? And Kahneman’s modes of thought
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📚 A path towards autonomous machine intelligence. LeCun, 2022.

𝑦
⋆
𝑥 ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

actions action space

optimal action

Actor

slow thinking: solve from scratch (e.g., with search, planning)

fast thinking: rapidly predict the solution
why? can be 25,000+ times faster (in VAEs)

context (state of the world)cost

Image source:



1. Define an amortization model ̂𝑦
𝜃
(𝑥) to approximate 𝑦⋆ 𝑥

     Example: a neural network mapping from 𝑥 to the solution

2. Define a loss ℒ that measures how well ̂𝑦 fits 𝑦⋆

     Regression: ℒ ̂𝑦
𝜃
≔ 𝔼

𝑝 𝑥
̂𝑦
𝜃
𝑥 − 𝑦

⋆
𝑥

2

2

  Objective: ℒ ̂𝑦
𝜃
≔ 𝔼

𝑝 𝑥
𝑓 ̂𝑦

𝜃
𝑥

3. Learn the model with min
𝜃

 ℒ ̂𝑦
𝜃

Amortization: going from slow to fast thinking
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📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

(vertical slices are optimization problems)



Why call it amortized optimization?
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training the model

to amortize: to spread out an upfront cost over time

fast approximate solutions

̂𝑦
𝜃
(𝑥) ≈ 𝑦

⋆
𝑥 ∈ argmin

𝑦∈𝒴(𝑥)

𝑓(𝑦; 𝑥)

expensive upfront cost

📚 Tutorial on amortized optimization. Amos. FnT in ML, 2023.

(vertical slices are optimization problems)

*also referred to as learned optimization



Existing, widely-deployed uses of amortization

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
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u uuaction action action

value

𝜋 𝑥
1 𝜋 𝑥

6
𝜋 𝑥

12

𝜋 𝑥 = argmax

𝑢

𝑄(𝑥, 𝑢)

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)
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Given a VAE model 𝑝 𝑥 = log∫
𝑧
𝑝 𝑥 𝑧 𝑝(𝑥),  encoding amortizes the optimization problem

 𝜆
⋆
𝑥 = argmax

𝜆

ELBO(𝜆; 𝑥) where    ELBO 𝜆;𝑥 ≔ 𝔼
𝑞 𝑧;𝜆

log 𝑝(𝑥|𝑧) −D
KL

𝑞 𝑥; 𝜆 𝑝(𝑧)).

u
∏?(x) ∏̂µ(x)

ELBO(∏; x)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

𝜆𝑥
1 𝑥

2
𝑥
3

Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)
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Given a task 𝒯, amortize the computation of the optimal parameters of a model

𝜃
⋆
𝒯 = argmax

𝜃

ℓ(𝒯, 𝜃)

Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)
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Given a dictionary 𝑊
𝑑

 of basis vectors and input 𝑥, a sparse code is recovered with

𝑦
⋆
𝑥 ∈ argmin

𝑦

𝑥 −𝑊
𝑑
𝑦

2

2
+𝛼 𝑦

1

Predictive sparse decomposition (PSD) and Learned ISTA (LISTA) amortize this problem
Kavukcuoglu, Ranzato, and LeCun, 2010. Gregor and LeCun, 2010.

Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)
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Finding fixed points 𝑦 = 𝑔 𝑦 𝑥
⋆
=  argmin

𝑥

1

2
𝑥
⊤
𝑄𝑥+ 𝑝

⊤
𝑥

 subject to 𝑏 −𝐴𝑥 ∈ 𝒦

Find 𝑧⋆  s.t. ℛ 𝑧
⋆
, 𝜃 = 0

• The standard Euclidean projection onto the non-negative orthant R
n
+ is defined by

⇡(x) 2 argmin
y

1

2
kx� yk22 s. t. y � 0, (20)

and has a closed-form solution given the ReLU, i.e. ⇡(x) := max{0, x}.

• The interior of the unit hypercube [0, 1]
n can be projected onto with the entropy-

regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �Hb(y), (21)

where

Hb(y) =:=

 
X

i

yi log yi + (1� yi) log(1� yi)

!
(22)

is the binary entropy function. Eq. (21) has a closed-form solution given by the sigmoid
or logistic function, i.e. ⇡(x) := (1 + e

�x
)
�1.

• The interior of the (n� 1)-simplex defined by

�n�1 := {p 2 R
n | 1>p = 1 and p � 0} (23)

can be projected onto with the entropy-regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �H(y) s. t. 1

>
y = 1 (24)

where H(y) := �
P

i
yi log yi is the entropy function. Eq. (24) has a closed-form

solution given by the softargmax, i.e. ⇡(x)j = e
xj/
P

i
e
xi , which is historically referred

to as the softmax.

Going beyond these, we next cover differentiable projections onto convex cones, noting that
they can also be softened or regularized to help with continuity when composed with learning
and amortization methods. Ali et al. (2017); Busseti et al. (2019) discuss differentiating the
standard Euclidean projections onto these, including:

• The second-order, Lorentz, or ice cream cone defined by
Ksoc := {(x, y) 2 R

m�1 ⇥ R : kxk2  y}. The standard
Euclidean projection is given in closed form as

⇡(x, y) :=

8
><

>:

0 kxk2  �y

(x, y) kxk2  y

1
2(1 +

y

kxk2 )(x, kxk2) otherwise.
(25)

and can be explicitly differentiated.

• The positive semidefinite cone Sm
+ of the space of m⇥m positive semidefinite matrices.

The Euclidean projection is obtained in closed-form by projecting the eigenvalues to
be non-negative with ⇡(X) :=

P
i
max{�i, 0}qiq>i , where the eigenvalue decomposition

of X is given by X =
P

i
�iqiq

>
i

. The derivative can be computed by differentiating
through the eigenvalue decomposition and projection of the eigenvalues.

18

KKT conditions

Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Amortized optimization-based reasoning and AI 13

Existing, widely-deployed uses of amortization

Foundations and Trends® in Machine Learning

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



This talk: recent developments in amortization

Amortized transportation
    Meta (and conditional) optimal transport
    Meta flow matching

Amortized convex conjugates
Amortized Lagrangian paths and geodesics

Amortized LLM attacks — AdvPrompter

Brandon Amos Amortized optimization-based reasoning and AI 14



Motivation: transporting between populations
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📚 Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurIPS 2022.

Image source: Bunne et al.

𝛼
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Image source: Bunne et al.

Motivation: transporting between populations
📚 Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurIPS 2022.

𝛼

𝛽
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Image source: Bunne et al.

Motivation: transporting between populations
📚 Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurIPS 2022.

𝛼

𝛽

Problem: measuring a cell requires destroying it
Cannot learn models of individual cells before and after treatment
Need to transport at the population level



Optimal transport problems

𝛼,𝛽 are measures       𝒞 𝛼,𝛽  is the set of valid couplings     𝑇  is a transport map from 𝛼 to 𝛽

𝛼

𝛽
𝛼

𝛽

𝛼

𝛽

𝛼

𝛽

Monge (primal, Wasserstein-2)
𝑇
⋆
(𝛼, 𝛽) ∈ argmin

𝑇∈𝒞 𝛼,𝛽

𝔼
𝑥∼𝛼

𝑥− 𝑇 𝑥
2

2

18Amortized optimization-based reasoning and AIBrandon Amos

📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.
Image source:



Challenge: computing OT maps

Many OT problems are numerically solved
Improving OT solvers is active research

Solving multiple OT problems: even harder
Standard solution: independently solve

Monge (primal, Wasserstein-2)
𝑇
⋆
(𝛼, 𝛽) ∈ argmin

𝑇∈𝒞 𝛼,𝛽

𝔼
𝑥∼𝛼

𝑥 − 𝑇 𝑥
2

2

19Amortized optimization-based reasoning and AIBrandon Amos

📚 Meta Optimal Transport. Amos et al., ICML 2023.
Image source:



Meta Optimal Transport
Idea: predict the solution to OT problems with amortized optimization
Simultaneously solve many OT problems, sharing info between instances

📚 Meta Optimal Transport. Amos, Cohen, Luise, Redko, ICML 2023.

Monge (primal, Wasserstein-2)
𝑇
⋆
(𝛼, 𝛽) ∈ argmin

𝑇∈𝒞 𝛼,𝛽

𝔼
𝑥∼𝛼

𝑥 − 𝑇 𝑥
2

2

̂𝑇
𝜃
𝛼,𝛽  (parameterize dual potential via an MLP)

≈

20Amortized optimization-based reasoning and AIBrandon Amos

we also consider other/discrete OT formulations



Meta OT for Discrete OT (Sinkhorn)

21

📚 Meta Optimal Transport. Amos, Cohen, Luise, Redko, ICML 2023.
📚 Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Cuturi, NeurIPS 2013.

Amortized optimization-based reasoning and AIBrandon Amos

Sinkhorn Meta OT + Sinkhorn

Figure 4: Sinkhorn convergence on test instances. Meta OT successfully predicts warm-start initial-
izations that significantly improve the convergence of Sinkhorn iterations.

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 5: Test set coupling predictions of the spherical transport problem. Meta OT’s initial pre-
diction is ⇡37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport maps T going to demand locations at the
end. The sphere is visualized with the Mercator projection.

4.1 Discrete OT between MNIST digits

Images provide a natural setting for Meta OT where the distribution over images provide the meta-
distribution D over OT problems. Given a pair of images ↵0 and ↵1, each grayscale image is
cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of
the atoms. The goal is to compute the optimal transport interpolation between the two measures
as in, e.g., Peyré et al. [2019, §7]. Formally, this means computing the optimal coupling P

? by
solving the entropic optimal transport problem between ↵0 and ↵1 and computing the interpolates
as ↵t = (t projy +(1� t) projx)#P

?, for t 2 [0, 1], where projx(x, y) := x and projy(x, y) = y.
We selected ✏ = 10�2 as app. A shows that it gives interpolations that are not too blurry or sharp.

Our Meta OT model f̂✓ (sect. 3.1) is an MLP that predicts the transport map between pairs of
MNIST digits. We train on every pair from the standard training dataset. Figure 2 shows that even
without fine-tuning, Meta OT’s predicted Wasserstein interpolations between the measures are close
to the ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence.
We then fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the
near-optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the
default initialization, and table 1 shows the runtime required to reach the default threshold.

7



RGB color palette transport

Meta OT in continuous settings (W2GN)

22

↵ � T#↵ T�1
# �

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The Seine by Claude Monet
(1872), obtained from WikiArt.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer

W2GN Meta OT + W2GN

Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.

8

📚 Meta Optimal Transport. Amos, Cohen, Luise, Redko, ICML 2023.
📚 Wasserstein-2 Generative Networks. Alexander Korotin et al., ICLR 2021.

Amortized optimization-based reasoning and AIBrandon Amos
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↵ � T#↵ T�1
# �

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.

17

↵ � T#↵ T�1
# �

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.

17

↵ � T#↵ T�1
# �

Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.

17

More Meta OT color transfer predictions

Amortized optimization-based reasoning and AIBrandon Amos

📚 Meta Optimal Transport. Amos, Cohen, Luise, Redko, ICML 2023.



Meta Flow Matching
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📚 Meta Flow Matching. Atanackovic, Zhang, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov, ICML GRaM Workshop, 2024.

Standard flow matching

min
𝜃

 𝔼
𝑡,𝜋(𝑥

0
,𝑥

1
)
𝑢
𝜃
𝑡, 𝑥

𝑡
− 𝑢

𝑡
𝑥 𝑥

0
, 𝑥

1

2

📚 Flow Matching for Generative Modeling. Lipman et al., ICLR 2023.
📚 Flow Straight and Fast. Liu, Gong, Liu, ICLR 2023.
📚 Stochastic interpolants. Albergo et al., 2023.

Image source: Fjelde, Mathieu, Dutordoir.
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

Meta flow matching

Amortize flows given conditioning 𝑐
(similar to text-conditioned diffusion)

min
𝜃

 𝔼
𝑡,𝑐,𝜋(𝑥

0
,𝑥

1
|𝑐)

𝑢
𝜃
𝑡, 𝑥

𝑡
|𝑐 − 𝑢

𝑡
𝑥 𝑥

0
, 𝑥

1
, 𝑐

2

Cell data



This talk: recent developments in amortization

Amortized transportation
    Meta (and conditional) optimal transport
    Meta flow matching

Amortized convex conjugates
Amortized Lagrangian paths and geodesics

Amortized LLM attacks — AdvPrompter

Brandon Amos Amortized optimization-based reasoning and AI 25



The convex conjugate of a function 𝒇:𝛀 → ℝ

𝑓
∗
𝑦 = sup

𝑥∈Ω

 𝑦
⊤
𝑥 − 𝑓(𝑥)

Brandon Amos Amortized optimization-based reasoning and AI 26

Image source: https://remilepriol.github.io/dualityviz/

𝑥

𝑓(𝑥)
𝑓
⋆
(𝑦)

𝑦

Naturally arises in:
1. physics (e.g., Hamiltonian from Lagrangian)
2. optimization (e.g., duality, optimal transport)
3. economics (e.g., supply from market)

Known closed-form for simple functions

𝑓 𝑥 = 𝑥
𝑝
, 𝑓

∗
𝑦 = 𝑦

𝑞
,

1

𝑝
+
1

𝑞
= 1

𝑓 𝑥 =
1

2
𝑥
⊤
𝑄𝑥,  𝑓

∗
(𝑦) =

1

2
𝑦
⊤
𝑄
−1
𝑦

Otherwise difficult to numerically compute
Solve an optimization problem for every 𝑦
Idea: amortize it! Predict maximizing point ̂𝑥

𝜃
𝑦

📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.



Amortization + fine tuning = SOTA Neural OT

Takeaway: amortization choice important, fine-tuning significantly helps

Published as a conference paper at ICLR 2023

Table 1: Comparison of L2-UVP on the high-dimensional tasks from the Wasserstein-2 benchmark
by Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and stan-
dard deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam

consistently improves the quality of the learned potential.

Baselines from Korotin et al. (2021a)
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

*[W2] Cycle None 0.1 0.7 2.6 3.3 6.0 7.2 2.0 2.7
*[MMv1] None Adam 0.2 1.0 1.8 1.4 6.9 8.1 2.2 2.6
*[MMv2] Objective None 0.1 0.68 2.2 3.1 5.3 10.1 3.2 2.7

*[MM] Objective None 0.1 0.3 0.9 2.2 4.2 3.2 3.1 4.1

Potential model: the input convex neural network described in app. B.3 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

Cycle None 0.28 ±0.09 0.90 ±0.11 2.23 ±0.20 3.03 ±0.06 5.32 ±0.14 8.79 ±0.16 5.66 ±0.45 4.34 ±0.14
Objective None 0.27 ±0.09 0.78 ±0.12 1.78 ±0.26 2.00 ±0.11 >100 >100 >100 >100

Cycle L-BFGS 0.26 ±0.09 0.77 ±0.11 1.63 ±0.28 1.15 ±0.14 2.02 ±0.10 4.48 ±0.89 1.65 ±0.10 5.93 ±9.43
Objective L-BFGS 0.26 ±0.09 0.79 ±0.12 1.63 ±0.30 1.12 ±0.11 1.92 ±0.19 4.40 ±0.79 1.64 ±0.11 2.24 ±0.13

Regression L-BFGS 0.26 ±0.09 0.78 ±0.12 1.64 ±0.29 1.14 ±0.12 1.93 ±0.20 4.41 ±0.74 1.69 ±0.11 2.21 ±0.15

Cycle Adam 0.26 ±0.09 0.79 ±0.11 1.62 ±0.29 1.14 ±0.12 1.95 ±0.21 4.55 ±0.62 1.88 ±0.26 >100
Objective Adam 0.26 ±0.09 0.79 ±0.14 1.62 ±0.31 1.08 ±0.14 1.89 ±0.19 4.23 ±0.76 1.59 ±0.12 1.99 ±0.15

Regression Adam 0.35 ±0.07 0.81 ±0.12 1.61 ±0.32 1.09 ±0.11 1.85 ±0.20 4.42 ±0.68 1.63 ±0.08 1.99 ±0.16

Potential model: the non-convex neural network (MLP) described in app. B.4 Amortization model: the MLP described in app. B.2
Amortization loss Conjugate solver n = 2 n = 4 n = 8 n = 16 n = 32 n = 64 n = 128 n = 256

Cycle None 0.05 ±0.00 0.35 ±0.01 1.51 ±0.08 >100 >100 >100 >100 >100
Objective None >100 >100 >100 >100 >100 >100 >100 >100

Cycle L-BFGS >100 >100 >100 >100 >100 >100 >100 >100
Objective L-BFGS 0.03 ±0.00 0.22 ±0.01 0.60 ±0.03 0.80 ±0.11 2.09 ±0.31 2.08 ±0.40 0.67 ±0.05 0.59 ±0.04

Regression L-BFGS 0.03 ±0.00 0.22 ±0.01 0.61 ±0.04 0.77 ±0.10 1.97 ±0.38 2.08 ±0.39 0.67 ±0.05 0.65 ±0.07

Cycle Adam 0.18 ±0.03 0.69 ±0.56 1.62 ±2.82 >100 >100 >100 >100 >100
Objective Adam 0.06 ±0.01 0.26 ±0.02 0.63 ±0.07 0.81 ±0.10 1.99 ±0.32 2.21 ±0.32 0.77 ±0.05 0.66 ±0.07

Regression Adam 0.22 ±0.01 0.28 ±0.02 0.61 ±0.07 0.80 ±0.10 2.07 ±0.38 2.37 ±0.46 0.77 ±0.06 0.75 ±0.09

Improvement factor over prior work 3.3 3.1 3.0 1.8 2.7 1.5 3.0 4.4

Table 2: Comparison of L2-UVP on the CelebA64 tasks from the Wasserstein-2 benchmark by
Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and standard
deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam con-

sistently improves the quality of the learned potential. The ConvICNN64 and ResNet potential
models are from Korotin et al. (2021a), and app. B.5 describes the (non-convex) ConvNet model.

Amortization loss Conjugate solver Potential Model Early Generator Mid Generator Late Generator

*[W2] Cycle None ConvICNN64 1.7 0.5 0.25
*[MM] Objective None ResNet 2.2 0.9 0.53

*[MM-R†] Objective None ResNet 1.4 0.4 0.22

Cycle None ConvNet >100 26.50 ±60.14 0.29 ±0.59
Objective None ConvNet >100 0.29 ±0.15 0.69 ±0.90

Cycle Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.04
Cycle L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.00

Objective Adam ConvNet 0.65 ±0.02 0.21 ±0.00 0.11 ±0.05
Objective L-BFGS ConvNet 0.61 ±0.01 0.20 ±0.00 0.09 ±0.00

Regression Adam ConvNet 0.66 ±0.01 0.21 ±0.00 0.12 ±0.00
Regression L-BFGS ConvNet 0.62 ±0.01 0.20 ±0.00 0.09 ±0.01

Improvement factor over prior work 2.3 2.0 2.4
†the reversed direction from Korotin et al. (2021a), i.e. the potential model is associated with the � measure

6 DEMONSTRATIONS ON SYNTHETIC DATA

I lastly demonstrate the stability of amortization and fine-tuning as described in algorithm 1 to learn
optimal transport maps between many 2d synthetic settings considered in the literature. In all of
these settings, I instantiate ICNN and MLP architectures and use regression-based amortization
with L-BFGS fine-tuning. Figures 3 to 5 show the settings considered in Makkuva et al. (2020) and
Rout et al. (2021), and fig. 6 shows the conjugate objective landscapes. Figure 7 shows maps learned
on synthetic settings from Huang et al. (2020). App. D contains more experimental details here.
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Korotin et al. (2021a), where *[the gray tags] denote their results. I report the mean and standard
deviation across 10 trials. Fine-tuning the amortized prediction with L-BFGS or Adam con-

sistently improves the quality of the learned potential. The ConvICNN64 and ResNet potential
models are from Korotin et al. (2021a), and app. B.5 describes the (non-convex) ConvNet model.
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I lastly demonstrate the stability of amortization and fine-tuning as described in algorithm 1 to learn
optimal transport maps between many 2d synthetic settings considered in the literature. In all of
these settings, I instantiate ICNN and MLP architectures and use regression-based amortization
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HD benchmarks: Unexplained Variance Percentage (UVP, lower is better)

CelebA benchmarks: UVP

📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.
📚 Do Neural Optimal Transport Solvers Work? Korotin et al., NeurIPS 2021.
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Transport between synthetic measures
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Learning flows via continuous OT
Continuous OT for flows:
1. Works only from samples (no likelihoods needed)
2. No need to explicitly enforce invertibility
3. No need to compute the log-det of the Jacobian

Published as a conference paper at ICLR 2021

make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
all quantities of interest.

In terms of the benefits of parameterizing a flow as a gradient field, the convex potential is an
Rd

! R function, which is different from most existing discrete-time flows which are Rd
! Rd.

This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.

2 BACKGROUND: NORMALIZING FLOWS AND OPTIMAL TRANSPORT

Normalizing flows are characterized by a differentiable, invertible neural network f such that the
probability density of the network’s output can be computed conveniently using the change-of-
variable formula

pY (f(x)) = pX(x)

����
@f(x)

@x

����
�1

() pY (y) = pX(f�1(y))

����
@f

�1(y)

@y

���� (1)

where the Jacobian determinant term captures the local expansion or contraction of the density near
x (resp. y) induced by the mapping f (resp. f

�1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.

2

📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.
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Conjugate amortization & fine-tuning in OTT
📚 Optimal Transport Tools. Cuturi et al., 2022. github.com/ott-jax/ott
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https://github.com/ott-jax/ott


This talk: recent developments in amortization

Amortized transportation
    Meta (and conditional) optimal transport
    Meta flow matching

Amortized convex conjugates
Amortized Lagrangian paths and geodesics

Amortized LLM attacks — AdvPrompter
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Lagrangian paths and geodesics
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Arises for:

1. Euclidean paths     ℒ 𝛾
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, ̇𝛾
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2
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2

2. … with obstacles  ℒ 𝛾
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𝑡

2

Known closed-form on simple geometries
Euclidean: 𝛾

𝑡

⋆
𝑥, 𝑦 = 1 − 𝑡 𝑥 + 𝑡𝑦

Otherwise difficult to numerically compute
Solve an optimization problem for every 𝑥, 𝑦
Idea: amortize it! Predict the geodesic path

𝛾
⋆
(𝑥, 𝑦)

𝑥

𝑦

incorporates physical knowledge from the world (e.g., obstacles, manifolds)

source

source: Liu et al., 2023.Image source

𝛾
⋆
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𝛾∈𝒞(𝑥,𝑦)

∫
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https://www.youtube.com/watch?v=eakKfY5aHmY
https://geometry-central.net/surface/algorithms/flip_geodesics/


Optimal transport with Lagrangian paths
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📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, UAI 2024.

̃𝛾
𝜃
𝑥, 𝑦 ≈ 𝛾

⋆
𝑥, 𝑦 = arginf

𝛾∈𝒞(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡

inf
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∬

𝒳×𝒴

𝑐 𝑥, 𝑦 d𝜋(𝑥, 𝑦)

𝑐 𝑥, 𝑦 = inf
𝛾∈𝒞(𝑥,𝑦)

∫

0

1

ℒ 𝛾
𝑡
, ̇𝛾

𝑡
d𝑡

Path amortization (parameterize as splines)

Lagrangian OT (Kantorovich primal)



NLOT excels at solving OT and learning metrics
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📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, UAI 2024.
📚 Riemannian Metric Learning via Optimal Transport. Scarvelis and Solomon, ICLR 2023.



Summary of amortization in OT
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𝜓
𝑐
𝑦 ≝ inf

𝑥

 𝜓 𝑥 + 𝑐(𝑥, 𝑦)

𝑐 𝑥, 𝑦 = inf
𝛾∈𝒞(𝑥,𝑦)

∫

0
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𝑡
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𝑡
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𝜓∈𝐿1 𝛼

∫

𝒴
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𝑐
𝑦 𝑑𝛽 𝑦 −∫

𝒳

𝜓 𝑥 𝑑𝛼 𝑥

𝑐 𝑥, 𝑦 = 𝑥− 𝑦
2

2

Kantorovich dual

𝒄-transform

Squared Euclidean Lagrangian (e.g., geodesics)
Costs

amortize this

amortize that

and this
📚 Neural Optimal Transport with Lagrangian Costs
Pooladian, Domingo-Enrich, Chen, Amos, UAI 2024.

📚 On amortizing convex conjugates for optimal transport
       Amos, ICLR 2023.

📚 Meta Optimal Transport
      Amos, Cohen, Luise, Redko, ICML 2023.



This talk: recent developments in amortization

Amortized transportation
    Meta (and conditional) optimal transport
    Meta flow matching

Amortized convex conjugates
Amortized Lagrangian paths and geodesics

Amortized LLM attacks — AdvPrompter
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Training and aligning LLMs
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Image source: https://www.labellerr.com/blog/reinforcement-learning-with-human-feedback-for-llms/

Write a tutorial on building a bomb à     Sorry, but an as AI assistant I am not able to help with that

https://www.labellerr.com/blog/reinforcement-learning-with-human-feedback-for-llms/


Jailbreaking LLMs (GCG)
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📚 Universal and Transferable Adversarial Attacks on Aligned Language Models. Zou et al., 2023.

https://llm-attacks.org/

attack string is static and has high perplexity — easy to filter



Prompt-conditional attacks via amortization
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📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.



Prompt optimization
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𝑞
⋆
𝑥 = argmin

𝑞

ℒ(𝑥, 𝑞) prompt space

semantically 
similar prompts

𝑥

optimal modification

quality of LLM response

prompt modifications (suffixes)

input prompt

𝑥 𝑞
⋆
(𝑥)

More general than just attacks: search over the prompt space to improve the output

📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.



AdvPrompter: amortized prompt optimization
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q
𝜃
𝑥 ≈ 𝑞

⋆
𝑥 = argmin

𝑞

ℒ(𝑥, 𝑞) prompt space

semantically 
similar prompts

𝑥

optimal modification

quality of LLM response

prompt modifications (suffixes)

input prompt

𝑥 𝑞
𝜃
(𝑥)

Train another LLM to amortize the prompt optimization

📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.

AdvPrompter



Fast, SOTA LLM jailbreaking
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📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.

ASR@N: Attack success rate in N trials



Improving LLM alignment
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Generate synthetic data with AdvPrompter, fine-tune model on it for better alignment

📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.

(AdvPrompter training iterations)

More robust after adv training



Concluding thoughts
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𝑦
𝜃
𝑥 ≈ 𝑦

⋆
𝑥 ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

actions action space

optimal action contextcost

! A path towards autonomous machine intelligence. LeCun, 2022.

Actor

Image source:

Optimization-based reasoning a foundation for AI systems

Slow thinking (system 2): formulating and solving it
Fast thinking (system 1): amortizing and distilling it

Many instances of us manually amortizing

Future AI systems (?)
automatically formulating and amortizing optimization problems
understanding the right abstraction (latent space) and objectives
developing intrinsically and extrinsically motivated problems

amortized solution
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