
slides

Differentiable optimization for robotics
Brandon Amos • Meta FAIR, NYC

github.com/bamos/presentations

Brandon Amos
� bda@meta.com • � bamos.github.io • � bdamos • � brandondamos

� bamos • Last updated on July 14, 2022

Current Position
Research Scientist, Meta AI, Fundamental AI Research (FAIR), New York City 2019 – Present

Education
Ph.D. in Computer Science, Carnegie Mellon University (0.00/0.00) 2014 – 2019
Thesis: Di�erentiable Optimization-Based Modeling for Machine Learning
Advisor: J. Zico Kolter

B.S. in Computer Science, Virginia Tech (3.99/4.00) 2011 – 2014

Previous Positions
Research Assistant, Carnegie Mellon University (with J. Zico Kolter on ML and optimization) 2016 – 2019
Research Intern, Intel Labs, Santa Clara (with Vladlen Koltun on computer vision) 2018
Research Intern, Google DeepMind, London (with Nando de Freitas and Misha Denil on RL) 2017
Research Assistant, Carnegie Mellon University (with Mahadev Satyanarayanan on mobile systems) 2014 – 2016
Research Intern, Adobe Research, San Jose (with David Tompkins on distributed systems) 2014
Research Assistant, Virginia Tech (with Layne Watson and David Easterling on optimization) 2013 – 2014
Research Assistant, Virginia Tech (with Jules White and Hamilton Turner on mobile systems) 2012 – 2014
Research Assistant, Virginia Tech (with Binoy Ravindran and Alastair Murray on compilers) 2012 – 2014
Software Intern, Snowplow (Scala development) 2013 – 2014
Software Intern, Qualcomm, San Diego (Python and C++ development) 2013
Software Intern, Phoenix Integration, Virginia (C++, C#, and Java development) 2012
Network Administrator Intern, Sunapsys, Virginia 2011

Honors & Awards
ICML Outstanding Reviewer 2022
ICLR Outstanding Reviewer 2019
NSF Graduate Research Fellowship 2016 – 2019
Nine undergraduate scholarships 2011 – 2014
Roanoke County Public Schools Engineering, Salem–Roanoke County Chamber of Commerce, Papa John’s, Scottish Rite of Freemasonry, VT
Intelligence Community Conter for Academic Excellence, VT Pamplin Leader, VT Benjamin F. Bock, VT Gay B. Shober, VT I. Luck Gravett

Publications [Google Scholar; 4963+ citations, h-index: 29+]

Representative publications that I am a primary author on are highlighted.

2022. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Tutorial on amortized optimization for learning to optimize over continuous domains [code]
Brandon Amos
arXiv 2022

2. Cross-Domain Imitation Learning via Optimal Transport [code]
Arnaud Fickinger, Samuel Cohen, Stuart Russell, and Brandon Amos
ICLR 2022

Page 1 of 8



Disclaimer
I am not a roboticist, so don’t expect any direct new robotics here

But I do know AI, ML, and optimization
• Perspective: robotics-relevant learning and optimization problems
• A tour through some of my favorite ideas, foundations, and recent papers
• Will emphasize the engineering side — concepts most useful for building systems

Focus also on continuous optimization, but many concepts transfer to discrete settings
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Optimization problems in robotics
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𝑦
⋆
𝑥 ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

optimization variables constraints (feasible given 𝑥)

solution (action or estimation) context (state of the world, or history)cost

Optimal control
𝑥 = current state 𝑦 = control sequences

Motion and path planning
 𝑥 = current state     𝑦 = paths

State estimation — SLAM, PGO, BA, SfM
𝑥 = noisy observations   𝑦 = corrected observations

Alignment and registration
 𝑥 = objects   𝑦 = alignment

Physics simulations
 𝑥 = state and action   𝑦 = next state

(from the workshop intro earlier)



Many parts of the world need to be learned — dynamics, costs, goals, constraints, landmarks

Adds parameters to the cost and constraints and 𝑦
𝜃

⋆
(𝑥)

Differentiable optimization: end-to-end learn through the optimization
Amortized optimization: predict the solutions when repeatedly solving

Where AI/ML fit in
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𝑦
𝜃

⋆
𝑥 ∈ argmin

𝑦∈𝒞
𝜃
(𝑥)

𝑓
𝜃
(𝑦; 𝑥)



Why differentiable optimization (for robotics)?
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📚 Past, Present, and Future of Simultaneous Localization And Mapping. Cadena et al., IEEE ToR 2016.

Example: SLAM. Give the front-end networks information about how the back-end is performing
Question from earlier: certifiable back-end optimization says nothing about errors in the front-end
Differentiable optimization provides a way of coupling them



Why differentiable optimization (for robotics)?
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📚 Past, Present, and Future of Simultaneous Localization And Mapping. Cadena et al., IEEE ToR 2016.

Example: SLAM. Give the front-end networks information about how the back-end is performing
Question from earlier: certifiable back-end optimization says nothing about errors in the front-end
Differentiable optimization provides a way of coupling them

Optimal control
! = current state " = control sequences

Motion and path planning
! = current state     " = paths

State estimation — SLAM, PGO, BA, SfM
! = noisy observations   " = corrected observations

Alignment and registration
! = objects   " = alignment

Physics simulations
! = state and action   " = next state

(from the workshop intro earlier)

Same end-to-end learning idea can be applied to every optimization problem from before

Neural network Loss

differentiable optimization



Optimization and Kahneman (and robotics)
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𝑦
⋆
𝑥 ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

actions action space

optimal action

slow thinking: solve from scratch (e.g., with search, planning)

fast thinking (amortization): rapidly predict the solution with a neural network
why? can be 25,000+ times faster

context (state of the world)cost

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Why call it amortized optimization?
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training the model

to amortize: to spread out an upfront cost over time

fast approximate solutions

̂𝑦
𝜃
(𝑥) ≈ 𝑦

⋆
𝑥 ∈ argmin

𝑦∈𝒴(𝑥)

𝑓(𝑦; 𝑥)

expensive upfront cost

(vertical slices are optimization problems)

*also referred to as learned optimization

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Existing, widely-deployed uses of amortization

Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
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u uuaction action action

value

𝜋 𝑥
1 𝜋 𝑥

6
𝜋 𝑥

12

𝜋 𝑥 = argmax

𝑢

𝑄(𝑥, 𝑢)

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)
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Given a VAE model 𝑝 𝑥 = log∫
𝑧
𝑝 𝑥 𝑧 𝑝(𝑥),  encoding amortizes the optimization problem

 𝜆
⋆
𝑥 = argmax

𝜆

ELBO(𝜆; 𝑥) where    ELBO 𝜆;𝑥 ≔ 𝔼
𝑞 𝑧;𝜆

log 𝑝(𝑥|𝑧) −D
KL

𝑞 𝑥; 𝜆 𝑝(𝑧)).

u
∏?(x) ∏̂µ(x)

ELBO(∏; x)

Deterministic Policy

u

º?(x)
ºµ(x)Q(x, u)

Stochastic Policy

𝜆𝑥
1 𝑥

2
𝑥
3

Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)
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Given a task 𝒯, amortize the computation of the optimal parameters of a model

𝜃
⋆
𝒯 = argmax

𝜃

ℓ(𝒯, 𝜃)

Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)
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Given a dictionary 𝑊
𝑑

 of basis vectors and input 𝑥, a sparse code is recovered with

𝑦
⋆
𝑥 ∈ argmin

𝑦

𝑥 −𝑊
𝑑
𝑦

2

2
+𝛼 𝑦

1

Predictive sparse decomposition (PSD) and Learned ISTA (LISTA) amortize this problem
Kavukcuoglu, Ranzato, and LeCun, 2010. Gregor and LeCun, 2010.

Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)
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Finding fixed points 𝑦 = 𝑔 𝑦 𝑥
⋆
=  argmin

𝑥

1

2
𝑥
⊤
𝑄𝑥+ 𝑝

⊤
𝑥

 subject to 𝑏 −𝐴𝑥 ∈ 𝒦

Find 𝑧⋆  s.t. ℛ 𝑧
⋆
, 𝜃 = 0

• The standard Euclidean projection onto the non-negative orthant R
n
+ is defined by

⇡(x) 2 argmin
y

1

2
kx� yk22 s. t. y � 0, (20)

and has a closed-form solution given the ReLU, i.e. ⇡(x) := max{0, x}.

• The interior of the unit hypercube [0, 1]
n can be projected onto with the entropy-

regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �Hb(y), (21)

where

Hb(y) =:=

 
X

i

yi log yi + (1� yi) log(1� yi)

!
(22)

is the binary entropy function. Eq. (21) has a closed-form solution given by the sigmoid
or logistic function, i.e. ⇡(x) := (1 + e

�x
)
�1.

• The interior of the (n� 1)-simplex defined by

�n�1 := {p 2 R
n | 1>p = 1 and p � 0} (23)

can be projected onto with the entropy-regularized optimization problem

⇡(x) 2 argmin
0<y<1

�x
>
y �H(y) s. t. 1

>
y = 1 (24)

where H(y) := �
P

i
yi log yi is the entropy function. Eq. (24) has a closed-form

solution given by the softargmax, i.e. ⇡(x)j = e
xj/
P

i
e
xi , which is historically referred

to as the softmax.

Going beyond these, we next cover differentiable projections onto convex cones, noting that
they can also be softened or regularized to help with continuity when composed with learning
and amortization methods. Ali et al. (2017); Busseti et al. (2019) discuss differentiating the
standard Euclidean projections onto these, including:

• The second-order, Lorentz, or ice cream cone defined by
Ksoc := {(x, y) 2 R

m�1 ⇥ R : kxk2  y}. The standard
Euclidean projection is given in closed form as

⇡(x, y) :=

8
><

>:

0 kxk2  �y

(x, y) kxk2  y

1
2(1 +

y

kxk2 )(x, kxk2) otherwise.
(25)

and can be explicitly differentiated.

• The positive semidefinite cone Sm
+ of the space of m⇥m positive semidefinite matrices.

The Euclidean projection is obtained in closed-form by projecting the eigenvalues to
be non-negative with ⇡(X) :=

P
i
max{�i, 0}qiq>i , where the eigenvalue decomposition

of X is given by X =
P

i
�iqiq

>
i

. The derivative can be computed by differentiating
through the eigenvalue decomposition and projection of the eigenvalues.

18

KKT conditions

Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport
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Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

𝛼

𝛽
𝛼

𝛽

📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport

LLM attacks (AdvPrompter)
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Existing, widely-deployed uses of amortization
📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport

LLM attacks (AdvPrompter)

Amortized optimization-based reasoning and AI
16

Existing, widely-deployed uses of amortization

Foundations and Trends® in Machine Learning

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Optimal transport

LLM attacks (AdvPrompter)

Amortized optimization-based reasoning and AI
17

Existing, widely-deployed uses of amortization

Foundations and Trends® in Machine Learning

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

Amortized optimization for robotics: another talk ☺

(e.g., if you are solving 10B optimization problems)



Differentiable optimization for robotics

1. Differentiable optimal control and MPC

2. Differentiable non-linear least squares

Brandon Amos Differentiable optimization for robotics 18



What is optimal control?
Optimal control is about 1) modeling part of the world and 2) interacting with that model

Brandon Amos Differentiable optimization for robotics 19

⇄

state

controls

𝑥
𝑡

𝑢
𝑡



Optimal control in robotics
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Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞

𝑡
̈𝑞
𝑡
+𝑛 𝑞

𝑡
, ̇𝑞

𝑡
= 𝜏 𝑞

𝑡
+𝐵𝑢

𝑡

Source

actuators e.g., torques on the joints, thrusters, 
steering, acceleration, braking

https://www.youtube.com/watch?v=tpFQR_HUYss


Optimal control in robotics
Optimal control is about 1) modeling part of the world and 2) interacting with that model

the robotic system actuators

⇄state
controls

!!

"!

e.g., the Newton-Euler equations of motion
𝑀 𝑞

𝑡
̈𝑞
𝑡
+𝑛 𝑞

𝑡
, ̇𝑞

𝑡
= 𝜏 𝑞

𝑡
+𝐵𝑢

𝑡

Source

Source: SpaceX

e.g., torques on the joints, thrusters, 
steering, acceleration, braking

source

📚 Learning high-speed flight in the wild. Loquercio et al., Science Robotics 2021.📚 RMA: Rapid Motor Adaptation for Legged Robots. Ashish Kumar et al., RSS 2021.
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https://commons.wikimedia.org/wiki/File:Animation_of_InSight_trajectory.gif
https://www.youtube.com/watch?v=m89bNn6RFoQ


min
𝑢

𝔼 𝐶
𝐻
(𝑥

𝐻
) +∫

𝑡=0

𝐻

𝑐
𝑡
(𝑥

𝑡
, 𝑢

𝑡
)

 subject to d𝑥
𝑡
= 𝑓 𝑥

𝑡
, 𝑢

𝑡
d𝑡 + 𝐹 𝑥

𝑡
, 𝑢

𝑡
d𝐵

𝑡
 

 𝑥
0
 given 

Types of optimal control problems
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Continuous time Discrete time

Optimal control is about 1) modeling part of the world and 2) interacting with that model

min
𝑢

 𝐶
𝐻
𝑥
𝐻

+∫

𝑡=0

𝐻

𝑐
𝑡
(𝑥

𝑡
, 𝑢

𝑡
)

 subject to ̇𝑥 = 𝑓 𝑥
𝑡
, 𝑢

𝑡
, 𝑥

0
 given

min
𝑢
0:𝐻−1

 𝐶
𝐻
𝑥
𝐻

+ ∑

𝑡=0

𝐻−1

𝑐
𝑡
(𝑥

𝑡
, 𝑢

𝑡
)

 subject to 𝑥
𝑡+1

= 𝑓 𝑥
𝑡
, 𝑢

𝑡
, 𝑥

0
 given

min
𝑢
0:𝐻−1

𝔼 𝐶
𝐻
𝑥
𝐻

+ ∑

𝑡=0

𝐻−1

𝑐
𝑡
(𝑥

𝑡
, 𝑢

𝑡
)  

 subject to 𝑥
𝑡+1

= 𝑓 𝑥
𝑡
, 𝑢

𝑡
, 𝑤

𝑡
, 𝑤

𝑡
∼ 𝑝(𝑤)

𝑥
0
 given

can add many more constraints/variations

our main focus



[Control→ML] interpret ML problems as control problems, solve with control methods❗

Where does machine learning fit in?
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⇄

state

controls

𝑥
𝑡

𝑢
𝑡

Machine learning (ML) is about using data to 1) create abstractions, and 2) make predictions

[ML→Control] learn how to model and interact with the world from data (e.g., reinforcement learning)

e.g., RL from human feedback for language models

Data

Optimal control is about 1) modeling part of the world and 2) interacting with that model



Control as an implicit function
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argmin

𝑢
0:𝐻−1

 𝐶
𝐻
𝑥
𝐻

+∑

𝑡=0

𝐻−1

𝑐
𝑡
(𝑥

𝑡
, 𝑢

𝑡
)

 subject to 𝑥
𝑡+1

= 𝑓 𝑥
𝑡
, 𝑢

𝑡

𝜋(𝑥
0
; 𝑐

𝑡
, 𝐶

𝐻
, 𝑓)

dynamics learning

cost learning
value learning

policy learning
(amortized optimization)

differentiable control
𝜕

𝜕𝑓
𝜋(𝑥)

𝜕

𝜕𝑐
𝑡

𝜋(𝑥) 𝜕

𝜕𝐶
𝐻

𝜋(𝑥)

and can be differentiated w.r.t. the parameters

𝑥
0
, 𝑐

𝑡
, 𝐶

ℎ
, 𝑓



Implicit differentiation

Idea: Differentiate controller’s optimality conditions

Agnostic of the control algorithm
Ill-defined if controller gives suboptimal solution
Memory and compute efficient: free in some cases

How to differentiate the controller?
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Unrolling or autograd

Idea: Implement controller, let autodiff do the rest
Like MAML’s unrolled gradient descent

Ideal when unconstrained with a short horizon
Does not require a fixed-point or optimal solution
Instable and resource-intensive for large horizons

û0
✓ û1

✓
. . . ûK

✓ ⇡̂✓(x) J
. . .

D
𝜃
𝑢
⋆
𝜃 = −D

𝑢
𝑔 𝜃, 𝑢

⋆
𝜃

−1

D
𝜃
𝑔 𝜃, 𝑢

⋆
𝜃

📚 Differentiable MPC for End-to-end Planning and Control. Amos, Rodriguez, Sacks, Boots, Kolter, NeurIPS 2018.
📚 The differentiable cross-entropy method. Amos and Yarats, ICML 2020.
📚 Learning convex optimization control policies. Agrawal, Barratt, Boyd, Stellato, L4DC 2020.
📚 Pontryagin differentiable programming. Jin, Wang, Yang, Mou, NeurIPS 2020.
📚 Infinite-Horizon Differentiable Model Predictive Control. East et al., ICLR 2020.
📚 NeuroMANCER. Drgona et al., GitHub 2023.
📚 Learning for CasADi: Data-driven Models in Numerical Optimization. Salzmann et al., L4DC 2024.



Implicitly differentiating convex LQR control

Algorithm 1 Differentiable LQR Module (The LQR algorithm is defined in Appendix A)

Input: Initial state xinit

Parameters: ✓ = {C, c, F, f}

Forward Pass:

1: ⌧
?
1:T = LQRT (xinit;C, c, F, f) . Solve (2)

2: Compute �
?
1:T with (7)

Backward Pass:

1: d
?
⌧1:T = LQRT (0;C,r⌧?

t
`, F, 0) . Solve (9), reusing the factorizations from the forward pass

2: Compute d
?
�1:T

with (7)
3: Compute the derivatives of ` with respect to C, c, F , f , and xinit with (8)

where the initial constraint x1 = xinit is represented by setting F0 = 0 and f0 = xinit. Differentiating
Equation (4) with respect to ⌧

?
t yields

r⌧tL(⌧?,�?) = Ct⌧
?
t + Ct + F

>
t �

?
t �


�
?
t�1
0

�
= 0, (5)

Thus, the normal approach to solving LQR problems with dynamic Riccati recursion can be viewed
as an efficient way of solving the following KKT system

Kz }| {
⌧t �t ⌧t+1 �t+12

6666666664

. . .
Ct F

>
t

Ft [�I 0]
�I

0

�
Ct+1 F

>
t+1

Ft+1

. . .

3

7777777775

2

66666664

...
⌧
?
t
�
?
t

⌧
?
t+1

�
?
t+1
...

3

77777775

= �

2

66666664

...
ct
ft
ct+1
ft+1

...

3

77777775

. (6)

Given an optimal nominal trajectory ⌧
?
1:T , Equation (5) shows how to compute the optimal dual

variables � with the backward recursion
�
?
T = CT,x⌧

?
T + cT,x, �

?
t = F

>
t,x�

?
t+1 + Ct,x⌧

?
t + ct,x, (7)

where Ct,x, ct,x, and Ft,x are the first block-rows of Ct, ct, and Ft, respectively. Now that we have
the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
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Backward pass: implicitly differentiate the LQR KKT conditions:

where
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Define implicit function via KKT optimality conditions
Find 𝑧⋆  s.t. 𝐾𝑧

⋆
+ 𝑘 = 0 where 𝑧⋆ = 𝜏

⋆
,…

Solved with Riccati recursion
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📚 Differentiable MPC for End-to-end Planning and Control. Amos, Rodriguez, Sacks, Boots, Kolter, NeurIPS 2018.



Differentiating non-convex MPC
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the optimal trajectory and dual variables, we can compute the gradients of the loss with respect to
the parameters. Since LQR is a constrained convex quadratic argmin, the derivatives of the loss
with respect to the LQR parameters can be obtained by implicitly differentiating the KKT conditions.
Applying the approach from Section 3 of Amos and Kolter [2017], the derivatives are
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We observe that Equation (9) is of the same form as the linear system in Equation (6) for the LQR
problem. Therefore, we can leverage this insight and solve Equation (9) efficiently by solving another
LQR problem that replaces ct with r⌧?
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` and ft with 0. Moreover, this approach enables us to re-use

the factorization of K from the forward pass instead of recomputing. Algorithm 1 summarizes the
forward and backward passes for a differentiable LQR module.
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Backward pass: differentiate the convex approximation, e.g., with:

where
Just an LQR problem!
(in some cases)

Solve with sequential quadratic programming (SQP)
Approximate non-convex argmin with the final convex approximation
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📚 Differentiable MPC for End-to-end Planning and Control. Amos, Rodriguez, Sacks, Boots, Kolter, NeurIPS 2018.



The Differentiable Cross-Entropy Method (DCEM)
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The cross-entropy method (CEM) optimizer:
1. Samples from the domain with a Gaussian
2. Updates the Gaussian with the top-k values

Solves challenging non-convex control problems

The differentiable cross-entropy method (DCEM):
Use unrolling to differentiate through CEM using:
1. the reparameterization trick for sampling
2. a differentiable top-k operation (LML)

📚 The differentiable cross-entropy method. Amos and Yarats, ICML 2020.



Control and CVXPY
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locuslab.github.io/2019-10-28-cvxpylayers

📚 Differentiable convex optimization layers. Agrawal, Amos, Barratt, Boyd, Diamond, Kolter, NeurIPS 2019.
📚 Learning convex optimization control policies. Agrawal, Barratt, Boyd, Stellato, L4DC 2020.

locuslab.github.io/2019-10-28-cvxpylayers


Metric learning via differentiable optimization

Why? A (Mahalanobis) metric (in the prediction space) captures importance of features and samples
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📚 TaskMet: Task-Driven Metric Learning for Model Learning. Bansal, Chen, Mukadam, Amos, NeurIPS 2023.
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Figure 2: Examples of the Mahalanobis loss from eq. (3) in a 2-dimensional prediction task. The
model’s loss is zero only when ŷ = y

?. Here, the metric ⇤�(x) increases the weighting on the y0

component of the loss and thus emphasizes the predictions along this dimension.

Many methods can be seen as hand-crafted ways of setting a Mahalanobis metric, including: 1)
normalizing the input data by making the metric appropriately scale the dimensions of the prediction,
2) re-weighting the samples as in Donti et al. [2017], Lambert et al. [2020] by making the metric
scale each sample based on some importance factor, or 3) using other performance measures, such as
the value gradient in Voelcker et al. [2022].

More generally beyond these, the Mahalanobis metrics help emphasize the:

1. relative importance of dimensions. the metric allows for down- or up-weighting different
dimensions of the prediction space by changing the diagonal entries of the metric. Figure 2
illustrates this.

2. correlations in the prediction space. the quadratic nature of the loss with the metric allows
the model to be aware of correlations between dimensions in the prediction space.

3. relative importance of samples. heteroscedastic metrics ⇤(x) enable different samples to be
weighted differently for the final expected cost over the dataset.

Without more information, parameterizing and specifying the best metric for learning the model
is challenging as it involves the subproblem of understanding the relative importance between
predictions. We suggest that when it is available, the downstream task information characterizing the
overall model’s performance can be used to learn a metric in the prediction space. Hence, learning
model parameters with a metricized loss can be seen as conditioning the learning problem. The ability
to learn the metric end-to-end enables the task to condition the learning of the model in any or all of
the three ways described above. This approach offers an interpretable method for the task to guide the
model learning, in contrast to relying solely on task gradients for learning model parameters, which
may or may not align effectively with the given prediction task.

3.2 End-to-end metric learning for model learning

The key idea of the method is to learn a metric end-to-end with a given task, which is then used
to train the prediction model as shown in eq. (3). The learning problem of the metric and model
parameters are formulated as the bilevel optimization problem

�
? := arg min

�
Ltask(✓

?(�)), (4)

subject to ✓
?(�) = arg min

✓
Lpred(✓,�) (5)

where � and ✓ are (respectively) the metric and model parameters, Lpred is the metricized prediction
loss (eq. (3)) to train the prediction model, and Ltask is the task loss defined by the task at hand (which
could be another optimization problem, e.g. eq. (8), or another learning task, e.g. eq. (10).

Gradient-based learning. We learn the optimal metric ⇤�? with the gradient of the task loss, i.e.
r�Ltask(✓?(�)). Using the chain rule and assuming we have the optimal ✓?(�) for some metric
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Variations and other extensions
📚 Pontryagin differentiable programming. Jin, Wang, Yang, Mou, NeurIPS 2020.
📚 Infinite-Horizon Differentiable Model Predictive Control. East et al., ICLR 2020.
📚 NeuroMANCER. Drgona et al., GitHub 2023.
📚 Learning for CasADi: Data-driven Models in Numerical Optimization. Salzmann et al., L4DC 2024.
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Other end-to-end learning (SPO) literature
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… among many others!



Differentiable optimization for robotics

1. Differentiable optimal control and MPC

2. Differentiable non-linear least squares
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SLAM
Bundle adjustment

Structure from motion
Tracking and estimation

…
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All of these settings are non-linear least squares
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All of these settings are non-linear least squares
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𝑦
⋆
𝑤, 𝑐 = argmin

𝑦

∑

𝑖

𝑤
𝑖
𝑐
𝑖
𝑦
𝑖

2

inputs
neural

models output
neural

models

Loss

and can be used in a larger, end-to-end learned pipeline
📚 Theseus: A library for differentiable nonlinear optimization. Pineda et al., NeurIPS 2022.
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Theseus is an efficient application-agnostic library for building custom 
nonlinear optimization layers in PyTorch to support constructing various 
problems in robotics and vision as end-to-end differentiable architectures
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and can be used in a larger, end-to-end learned pipeline

https://sites.google.com/view/theseus-ai

📚 Theseus: A library for differentiable nonlinear optimization. Pineda et al., NeurIPS 2022.
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Differentiable NLLS before Theseus

 The literature is (was) fragmented
• Implementations are application specific
• Limited batching and GPU support
• Do not leverage sparsity
• Backprop only via unrolling

 



Theseus is a unified solver for all of them
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📚 Theseus: A library for differentiable nonlinear optimization. Pineda et al., NeurIPS 2022.



Examples implemented in Theseus
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Pose Graph Optimization (PGO)

Motion Planning
Bundle Adjustment

Tactile State Estimation

Homography Estimation

📚 Theseus: A library for differentiable nonlinear optimization. Pineda et al., NeurIPS 2022.



Reception, extensions, and improvements
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Backward modes for computing 𝑫
𝒘
𝒚
⋆
(𝒙)

46

Unrolled: differentiate through entire sequence of iterates

Truncated: unroll only through the last 𝐻  iterates

Brandon Amos Differentiable optimization for robotics

Implicit: use implicit function theorem on optimality condition

Direct loss: perturbation-based estimate of the derivatives



PyPose: faster implementations
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1. Differentiable optimal control and MPC
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😅

PyPose: faster implementations



PyPose: faster implementations

1. Differentiable optimal control and MPC

2. Differentiable non-linear least squares
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1. Differentiable optimal control and MPC

2. Differentiable non-linear least squares

(next time: amortized optimization for robotics)


