
Lecture 11: Dimensionality Reduction with MDS
and TSNE
Applied Machine Learning
Brandon Amos and Volodymyr Kuleshov
Cornell Tech



Announcements
Homework 3 will be released today and due Oct 23



Last class: PCA
Type: Unsupervised learning (dimensionality reduction)

Model family: Linear projection ( )

Objective function: Reconstruction error or variance maximization

Optimizer: Matrix eigendecomposition

fθ(x) = W ⊤x



PCA losses: max variance = min reconstruction
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When PCA fails
PCA is intuitive and easy to implement, but fails on non-linear structures

Let's consider this 2D S-curve. What will the PCA look like?

X, y = make_s_curve_2d(n_samples=500, noise=0.05)
fig, ax = fig_ax_with_padding()
ax.set_title('2D S-curve data')
ax.scatter(X[:,0], X[:,1], c=y, cmap='Set1');



Running our PCA implementation on it gives:

def pca_project(X, p=2):
    np.random.seed(0)
    Sigma = X.T.dot(X) / X.shape[0] # form covariance matrix
    L, Q = np.linalg.eig(Sigma) # perform eigendecomposition
    W = Q[:,:p] # get top p eigenvectors
    Z = X.dot(W) # project on these eigenvectors
    return np.real(Z), W # return projected points and the projection matrix

Z, W = pca_project(X, p=2)
plot_pca_1d(X, Z, W)



So what happened? PCA's linear projection fails on the non-linear structure

This class: Two non-linear visualization and embedding methods:

1. Multidimensional scaling (MDS)

2. -distributed stochastic neighbor embedding (t-SNE)t

visualize_pca_mds_tsne(X, y, p=1);



Part 1: Multidimensional scaling (MDS)



Distinguishing projections and embeddings
PCA is based on projections

PCA parameterizes a (linear) mapping of the data

This mapping gives embeddings, defined as 

The embeddings are obtained by applying the mapping to every data point

fθ(x) = W ⊤x ∈ Rd where θ = W

z(i) = fθ (x(i))



Embedding-based visualizations
In contrast to PCA, MDS and TSNE directly parameterize the embeddings

Extremely connected to the training dataset, cannot apply to new points

There is no explicit map or projection

Gives much more flexibility, points can be associated anywhere

fθ (x(i)) = z(i) ∈ Rd where θ = {z(i)}n

i=1



Optimizing embeddings
We can't use the same objective as PCA. Let's see why.



Optimizing variance doesn't work ❌

In PCA, this worked because the embeddings were constrained to the hyperplane of
the projection.

With just embeddings, nothing connects  back to  to constrain them. So, the
variance will go to infinity
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Reconstruction error also doesn't work ❌

In PCA, this again worked because of the constraints of the map.

With just embeddings, arguably the inverse of the embedding is already just the
original data point, i.e., . So, the objective is zero everywhere
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Reconstructing pairwise distances
Consider a pair of points  and . Ideally we want the distance of the corresponding
embeddings to match their distance:

Since the embeddings are in a lower-dimensional space, the distances won't be
perfectly matched.

But, they'll get close and hopefully give us a good visualization.

x(i) x(j)

∥x(i) − x(j)∥ ≈ ∥z(i) − z(j)∥



The stress loss function
We define the stress loss function on every pair of points as

Question: Does PCA also optimize stress under the linear mapping constraint?

Jstress(θ) = ∑
i≠j

(∥x(i) − x(j)∥ − ∥z(i) − z(j)∥)2



Optimizing MDS
There is not a closed-form solution to optimizing the stress of the embeddings.

MDS optimization is usually done with an algorithm called SMACOF (scaling by
majorization a complicated function), which iteratively bounds the objective with a
convex function.



Optimizing MDS
Here, we will simply do MDS with gradient descent
(noting it is not-standard and not optimal)

1. Initialize the embeddings .

2. Repeat until converged

θ = {zi}

θ ← θ − α∇θJstress(θ)



Let's implement it:

import jax # use jax for speed
import jax.numpy as jnp

def euclidean_distances(X):
    return jnp.sqrt(jnp.sum((X[:,None] - X[None])**2, axis=-1))

def stress_fn(Z, D):
    Z_dists = euclidean_distances(Z)
    val = jnp.sum((D - Z_dists)**2) / 2.
    return val

def stress_grad_fn(Z, D):
    Z_dists = euclidean_distances(Z)
    grad = (Z[:,None] - Z[None]) * (Z_dists - D)[:,:,None]
    grad = jnp.sum(grad, axis=1)
    return grad

stress_fn = jax.jit(stress_fn)
stress_grad_fn = jax.jit(stress_grad_fn)

def mds(X, p=2, num_iterations=2000, lr=1e-2, verbose=False):
    np.random.seed(0)
    D = euclidean_distances(X) # only need to compute once
    Z = np.random.uniform(size=(X.shape[0], p))
    for i in range(num_iterations):
        if i % 5000 == 0 and verbose:
            loss = stress_fn(Z, D)
            print(f'Iteration {i}, loss: {loss:.2e}')
        grad_Z = stress_grad_fn(Z, D)
        Z -= lr * grad_Z / Z.shape[0]**2
    return Z



Let's run the MDS code on the S-curve data

Z = mds(X, p=1, num_iterations=50000, verbose=True)
Z_scipy = visualize_our_mds(X, y, Z)

Iteration 0, loss: 3.32e+05
Iteration 5000, loss: 3.05e+05
Iteration 10000, loss: 2.76e+05
Iteration 15000, loss: 2.48e+05
Iteration 20000, loss: 2.20e+05
Iteration 25000, loss: 1.95e+05
Iteration 30000, loss: 1.72e+05
Iteration 35000, loss: 1.53e+05
Iteration 40000, loss: 1.37e+05
Iteration 45000, loss: 1.24e+05



It's also useful to look at the distance matrices. This shows the difficulty of reproducing
the full fidelity of the original distances.

I = np.argsort(y); y = y[I]; X = X[I]; Z = Z[I]; Z_scipy = Z_scipy[I] # sort by location

D_original = euclidean_distances(X)
D_embedded = euclidean_distances(Z_scipy)

fig, axs = plt.subplots(1, 2, figsize=(12, 4))
axs[0].imshow(D_original, cmap='Blues', vmin=0., vmax=4.)
img = axs[1].imshow(D_embedded, cmap='Blues', vmin=0., vmax=4.)
axs[0].set_title('Original distance matrix'); axs[1].set_title('MDS-embedded distance matrix'); fig.colorbar(img, cmap='Blues');
for ax in axs: ax.set_xlabel('data index i'); ax.set_ylabel('data index j')



Multidimensional scaling (MDS)
Type: Unsupervised learning (dimensionality reduction)

Model family: Embeddings ( )

Objective function: Stress 

Optimizer: Iterative (ideally SMACOF)

The MDS variant we have covered is called "metric MDS", and there are others.

On the homework, we will see one called "classical MDS" (or principal coordinates
analysis) that optimizes a different loss (called strain) and has a closed-form solution.

fθ(x(i)) = z(i)

Jstress(θ) = ∑i≠j(∥x(i) − x(j)∥ − ∥z(i) − z(j)∥)2



Part 2: t-distributed stochastic neighbor
embedding (TSNE)



47.8k citations (Oct 9, 2024)



Difficulties of reproducing pairwise distances
Reproducing all of the pairwise distances in a lower-dimensional space is hard, even
when we have full control over the embedding locations.

fig # display the MDS distances from before



How to improve poor pairwise distance
reconstructions?
1. If we just care about reproducing the distances ad not visualization, we could

make the dimension of the embedding space larger

2. If we want to stay in a low-dimensional space, we can change the notion of

distance (this is what TSNE does)



Probabilistic (stochastic) pairwise distances
Given a point , measure the "distance" to another point by the probability the
distance to that point was sampled from a Gaussian, and normalize it.

Formally for , this is  normalized so that . Then,

the probabilities are symmetrized as .

Image source: https://spotintelligence.com/2023/12/22/practical-guide-t-sne/

x(i)

j ≠ i pj|i ∝ exp{−∥x(i) − x(j)∥2/2σ2
i } ∑j pj|i = 1

pij ∝ pj|i + pi|j



def gaussian_distances(X, bandwidth):
    return np.exp(-euclidean_distances(X) / (2.*bandwidth))

def get_tsne_target_probability(X, bandwidth=0.6):
    D = gaussian_distances(X, bandwidth=bandwidth) # in the full TSNE, the bandwidth searched over for each i.
    p_j_given_i = D / (D.sum(axis=1) - 1.) # normalize the distances so \sum_j p_{j|i}=1 for every i.
    np.fill_diagonal(p_j_given_i, 0.) # p_{i|i} = 0 for every i.
    p_ij = (p_j_given_i + p_j_given_i.T) / (2.*X.shape[0]) # symmetrize and normalize so \sum_{i,j} p_{i,j} = 1.
    return p_ij

p_ij = get_tsne_target_probability(X)
fig, axs = plt.subplots(1, 2, figsize=(10, 4))
img = axs[0].imshow(D_original, cmap='Blues', vmin=0., vmax=4.); fig.colorbar(img)
img = axs[1].imshow(p_ij, cmap='Purples'); fig.colorbar(img)
axs[0].set_title('Euclidean target distance matrix'); axs[1].set_title('TSNE target probability matrix')
for ax in axs: ax.set_xlabel('data index i'); ax.set_ylabel('data index j')



We can also see that the new pairwise similarity matrix is a valid probability distribution
and has entries that sum to 1:

print(f'sum_ij p_ij: {p_ij.sum():.2f}')

sum_ij p_ij: 1.00



We can look at our MDS solution under this new probabilistic similarity:

p_ij_embedded = get_tsne_target_probability(Z_scipy)
fig, axs = plt.subplots(1, 4, figsize=(18, 4))
axs[0].imshow(D_original, cmap='Blues', vmin=0., vmax=4.)
axs[1].imshow(D_embedded, cmap='Blues', vmin=0., vmax=4.)
axs[2].imshow(p_ij, cmap='Purples')
axs[3].imshow(p_ij_embedded, cmap='Purples')
axs[0].set_title('Original distance matrix'); axs[1].set_title('MDS-embedded distance matrix')
axs[2].set_title('Original similarities'); axs[3].set_title('MDS-embedded similarities')
for ax in axs: ax.set_xlabel('data index i'); ax.set_ylabel('data index j')



The TSNE loss: the Kullback-Leibler
Let's call  the similarity matrix of the true data and  the similarity matrix of the
embeddings. Since these are valid probability distributions, we can define the loss to
be the distance between them. TSNE does this with the Kullback-Leibler divergence:

Image source: https://blog.evjang.com/2016/08/variational-bayes.html

PX Qθ

JTSNE = KL(PX||Qθ) := ∑
i≠j

pij log
pij

qij



TSNE's perplexity parameter
In creating , there is the choice of what bandwidth  to use.

TSNE advocates to adaptively set the bandwidth different for every  so every  has
the same entropy and perplexity.

The entropy of a categorical distribution is defined by , and the

perplexity is defined by 

pj|i ∝ exp{−∥x(i) − x(j)∥2/2σ2
i } σi

i pj|i

H(p) = −∑j pj log pj

Perp(p) = 2H(p)



We can think of the perplexity parameter as controlling how spread out the mass of the
reference distribution is — how many neighbors are used. One way to see this is just to
ablate across constant bandwidths. We'll ablate it more later.

bandwidths = [0.1, 0.5, 1.0, 5.0]

fig, axs = plt.subplots(1, len(bandwidths), figsize=(12,4))
for ax, bandwidth in zip(axs, bandwidths):
    ax.set_xlabel('data index i'); ax.set_ylabel('data index j')
    p = get_tsne_target_probability(X, bandwidth=bandwidth)
    ax.imshow(p, cmap='Purples')
    ax.set_title(f'bandwidth = {bandwidth:.1f}')
fig.tight_layout()



Constructing  with a student's t
TSNE uses a Gaussian to construct the reference similarity matrix , but advocates for
another choices for the embedded similarity matrix .

They argue for a student's  distribution to help ignore dissimilar points.

Qθ

PX

Qθ

t



Optimizing TSNE
The formulation for TSNE is thus

where  is the data similarity matrix and  is the similarity matrix induced by the
embeddings.

argmin
θ

{JTSNE(θ) := KL(PX,Qθ)}

PX Qθ



Optimizing TSNE
Like in metric MDS, the solution is not known in closed form. It is often approximated
with gradient-based optimization, which in the simplest form is:

1. Initialize the embeddings .

2. Repeat until converged

θ = {zi}

θ ← θ − α∇θJTSNE(θ)



TSNE
Type: Unsupervised learning (dimensionality reduction)

Model family: Embeddings ( )

Objective function: KL between probabilistic similarities, 

Optimizer: Gradient descent

fθ(x(i)) = z(i)

JTSNE = KL(PX||Qθ)



Part 3: Visualizing high-dimensional data
We now apply PCA, MDS, and TSNE to some high-dimensional data.



Newsgroups
We'll start with the newsgroups data from the Naïve Bayes lecture.

from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer

categories = ['alt.atheism', 'soc.religion.christian', 'comp.graphics', 'sci.med']
twenty_train = fetch_20newsgroups(subset='train', categories=categories, shuffle=True, random_state=42)
count_vect = CountVectorizer(binary=True, max_features=100)
X = count_vect.fit_transform(twenty_train.data).toarray().astype(np.float32)
y = twenty_train.target
np.random.seed(0)
idx = np.random.choice(X.shape[0], size=500, replace=False)
X, y = X[idx], y[idx]
print('a single example: ', X[0])

a single example:  [0. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.
 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 0. 1. 0. 0. 1. 1. 0. 0. 0. 0.
 1. 0. 0. 0. 1. 0. 0. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 0. 0.
 1. 0. 0. 0. 1. 0. 0. 0. 1. 0. 1. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1.
 1. 0. 0. 0.]



The visualizations for the newsgroup data is:

visualize_pca_mds_tsne(X, y, p=2, legend=twenty_train['target_names']);



Visualizing image data: MNIST
This classic dataset consists of grayscale images representing handwritten digits

from sklearn.datasets import fetch_openml
X, y = fetch_openml("mnist_784", version=1, return_X_y=True, as_frame=False, parser='auto')
np.random.seed(0)
idx = np.random.choice(X.shape[0], size=1000, replace=False)
X, y = X[idx], y[idx]
X = X.astype(np.float64) / 255.
y = y.astype(int)
print('image pixel values: ', X[0][120:131])
fig, axs = plt.subplots(ncols=4)
for i, ax in enumerate(axs):
    ax.imshow(X[i].reshape((28, 28)), cmap='Greys')
    ax.set_xticks([]); ax.set_yticks([])

image pixel values:  [0.   0.   0.   0.   0.   0.35 0.58 0.58 0.98 0.9  0.23]



TSNE clearly visualizes the clusters in the MNIST data better than PCA and MDS. This
was a key component of their original paper.

legend = [str(i) for i in range(10)]
visualize_pca_mds_tsne(X, y, p=2, extra_plot_kwargs={'cmap': 'tab10'}, legend=legend);



We can also use the MNIST data to ablate TSNE's perplexity parameter, controlling
how many neighbors are taken into consideration:

perplexities = [1.0, 10., 50., 200.]

fig, axs = plt.subplots(1, len(bandwidths), figsize=(12,4))
for ax, perplexity in zip(axs, perplexities):
    ax.set_xlabel('$z_0$'); ax.set_ylabel('$z_1$')
    Z = TSNE(n_components=2, perplexity=perplexity).fit_transform(X)
    ax.scatter(Z[:,0], Z[:,1], c=y, cmap='Set1')
    ax.set_title(f'perplexity = {perplexity:.1f}')
fig.tight_layout()



Voting data
We'll next look at some congressional voting data from congress members in 1984.

house.votes.84: United States Congressional Voting Records 1984

This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key 
votes identified by the CQA. The CQA lists nine different types of votes: voted for, paired for, and 
announced for (these three simplified to yea), voted against, paired against, and announced against 
(these three simplified to nay), voted present, voted present to avoid conflict of interest, and did 
not vote or otherwise make a position known (these three simplified to an unknown disposition).



Here's what the data looks like.

class_name handicapped_infants water_project_cost_sharing adoption_of_the_budget_resolution physician_fee_freeze el_salvador_aid r

0 republican n y n y y

1 republican n y n y y

2 democrat ? y y ? y

3 democrat n y y n ?

4 democrat y y y n y

df, X, y = get_voting_data()
print(f'label={y[0]}, features={X[0]}')
df.head()

label=1, features=[-1  1 -1  1  1  1 -1 -1 -1  1  0  1  1  1 -1  1]



And embedding the voting records gives:

visualize_pca_mds_tsne(X, y, p=2, extra_plot_kwargs={'vmax': 8}, legend=['Republican', 'Democrat']);



Visualizing word embeddings
We'll last look at GloVe word embeddings (we could also use word2vec or fasttext
embeddings). These are already semantically-rich vectors of words. Let's look at a few.

words = ["joyful", "happy", "sad", "angry", "fearful", "loving", "hateful", "surprised",
         "disgusted", "excited", "calm", "anxious", "frustrated", "hopeful",
         "despairing", "trusting", "distrustful", "envious", "compassionate", "grieving", "curious"]
embeddings = np.array([glove.emb(word) for word in words])
for i in range(5):
    print(f'word: {words[i]}\tembedding[:10]: {embeddings[i,:10]}')

word: joyful embedding[:10]: [ 0.21  0.35 -0.36 -0.12  0.41  0.35  0.55  0.78  0.39  1.41]
word: happy embedding[:10]: [ 0.04  0.41 -0.52 -0.07  0.09 -0.05  0.41 -0.43  0.19  2.39]
word: sad embedding[:10]: [-0.01  0.28  0.07  0.14 -0.38 -0.18  0.29 -0.31  0.15  2.31]
word: angry embedding[:10]: [-0.61 -0.12 -0.31 -0.19 -0.23  0.28  0.57  0.26  0.23  2.43]
word: fearful embedding[:10]: [-0.06 -0.24  0.3   0.05 -0.08  0.12  0.19  0.86 -0.19  2.19]



It's still hard to visualize how they relate to each other in this high-dimensional space,
so let's embed them into 2 dimensions:

fig, axs = visualize_pca_mds_tsne(embeddings, p=2, tsne_perplexity=10, ax_cb=ax_cb)



Lastly let's look at another set of words:

words = ["apple", "cat", "dog", "banana", "chair", "pencil", "shoe", "lamp", "bicycle",
         "book", "pillow", "guitar", "mug", "tree", "clock",
         "blanket", "spoon", "laptop", "hat", "door", "bottle"]
embeddings = np.array([glove.emb(word) for word in words])
fig, axs = visualize_pca_mds_tsne(embeddings, p=2, tsne_perplexity=10, ax_cb=ax_cb)



Conclusions
The ill-defined nature of visualization leads to many options:

1. We covered PCA, MDS, TSNE. There's also LLE, UMAP, and others depending

on the setting.

2. Can combine pieces to create new methods. For example the TSNE objective by

parameterizing maps instead of embeddings.

Next class: Back to classification and introducing SVMs


