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Machine learning and optimization
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Machine learning and optimization
Key: view optimization as a function from the context 𝑥 to the solution 𝑦⋆(𝑥) ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦;𝑥)
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[ICML 2017] Differentiable QPs: OptNet
[ICML 2017] Input-convex neural networks
[NeurIPS 2017] Differentiable Task-based Model Learning
[NeurIPS 2018] Differentiable MPC for End-to-end Planning and Control
[NeurIPS 2019] Differentiable Convex Optimization Layers
[Ph.D. Thesis 2019] Differentiable Optimization-Based Modeling for ML
[arXiv 2019] Differentiable Top-k and Multi-Label Projection
[arXiv 2019] Generalized Inner Loop Meta-Learning: ∇higher
[ICML 2020] Differentiable Cross-Entropy Method
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[NeurIPS 2023] TaskMet: metric learning for DFL
[NeurIPS 2023] LANCER: Surrogates for DFL
[arxiv 2024] REINFORCE for DFL

Differentiable optimization — 𝜕

𝜕𝑥
𝑦
⋆
(𝑥)
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Large language models (LLMs) and optimization
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1. Parameter optimization (and fine-tuning)

📚 Shampoo: Preconditioned Stochastic Tensor Optimization.
📚 SOAP: Improving and stabilizing Shampoo
📚 Learning-Rate-Free Learning by D-Adaptation
📚 The road less scheduled

📚 LoRA: Low-Rank Adaptation of Large Language Models
📚 GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection
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2. Solving optimization problems with LLMs
📚 Large Language Models as Optimizers
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📚 Prompt a Robot to Walk with Large Language Models

3. Prompt  optimization — this talk
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Prompt optimization

On LLM prompt optimization and amortization

𝑞
⋆
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input prompt

Search over the prompt space to improve the output
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𝑛  (often ≈ 100,000
20)
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This talk
Applications
Improved performance
Jailbreaking, finding harmful outputs
Prompt inversion and recovery

Methods
Relaxation (soft prompting), relaxation+projection (PGD, COLD Attack), parameterize a categorical 
(GBDA), prompting another LLM (LLM as optimizer, “gradients”, RePrompt), greedy coordinate 
methods (GCG, AutoDAN)

Amortized prompt optimization
📚 AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs

Brandon Amos On LLM prompt optimization and amortization 13



1. Improved performance on quantifiable tasks
📚 Large Language Models are Zero-Shot Reasoners
📚 Large Language Models as Optimizers
📚 InstructZero: Efficient Instruction Optimization for Black-Box LLMs
📚 Automatic Prompt Optimization with “Gradient Descent” and Beam Search
📚 Large Language Models Are Human-Level Prompt Engineers
📚 REPROMPT: Planning by Automatic Prompt Engineering for LLM Agents

Applications of prompt optimization

Brandon Amos On LLM prompt optimization and amortization 14
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& many more!
📚 A Systematic Survey of Prompt Engineering in Large Language Models



Prompt optimization and training/alignment
Add optimized prompts into the preference dataset

Brandon Amos On LLM prompt optimization and amortization 20

Image source: https://www.labellerr.com/blog/reinforcement-learning-with-human-feedback-for-llms/
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This talk
Applications
Improved performance
Jailbreaking, finding harmful outputs
Prompt inversion and recovery

Methods
Relaxation (soft prompting), relaxation+projection (PGD, COLD Attack), parameterize a categorical 
(GBDA), prompting another LLM (LLM as optimizer, “gradients”, RePrompt), greedy coordinate 
methods (GCG, AutoDAN)

Amortized prompt optimization
📚 AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs
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Soft prompting (relaxation)

Brandon Amos On LLM prompt optimization and amortization 22



Bayesian optimization over soft prompts

Brandon Amos On LLM prompt optimization and amortization 23



Soft prompts with projection/decoding

Brandon Amos On LLM prompt optimization and amortization 24



Categorical + Gumbel Softmax

Brandon Amos On LLM prompt optimization and amortization 25



Prompting another LLM (“gradients”)
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Prompting another LLM (“gradients”)
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Prompting another LLM (“gradients”)
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Prompting another LLM (“gradients”)
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Prompting another LLM (“gradients”)
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Greedy Coordinate Methods

Brandon Amos On LLM prompt optimization and amortization 31



Greedy Coordinate Methods

Brandon Amos On LLM prompt optimization and amortization 32

greedily construct attack string



This talk
Applications
Improved performance
Jailbreaking, finding harmful outputs
Prompt inversion and recovery

Methods
Relaxation (soft prompting), relaxation+projection (PGD, COLD Attack), parameterize a categorical 
(GBDA), prompting another LLM (LLM as optimizer, “gradients”, RePrompt), greedy coordinate 
methods (GCG, AutoDAN)

Amortized prompt optimization
📚 AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs
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A crash course on amortized optimization

On LLM prompt optimization and amortization

📚 A path towards autonomous machine intelligence. LeCun, 2022.

𝑦
⋆
𝑥 ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

actions action space

optimal action

Actor

slow thinking: solve from scratch (e.g., with search, planning)

fast thinking: rapidly predict the solution
why? can be 25,000+ times faster (in VAEs)

context (state of the world)cost

Image source:

(amortization)
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1. Define an amortization model ̂𝑦
𝜃
(𝑥) to approximate 𝑦⋆ 𝑥

     Example: a neural network mapping from 𝑥 to the solution

2. Define a loss ℒ that measures how well ̂𝑦 fits 𝑦⋆

     Regression: ℒ ̂𝑦
𝜃
≔𝔼

𝑝 𝑥
̂𝑦
𝜃
𝑥 −𝑦

⋆
𝑥

2

2

  Objective: ℒ ̂𝑦
𝜃
≔𝔼

𝑝 𝑥
𝑓 ̂𝑦

𝜃
𝑥

3. Learn the model with min
𝜃

 ℒ ̂𝑦
𝜃

Amortization: going from slow to fast thinking

On LLM prompt optimization and amortization

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

Brandon Amos 35



Why call it amortized optimization?

On LLM prompt optimization and amortization

training the model

to amortize: to spread out an upfront cost over time

fast approximate solutions

̂𝑦
𝜃
(𝑥) ≈ 𝑦

⋆
𝑥 ∈ argmin

𝑦∈𝒴(𝑥)

𝑓(𝑦;𝑥)

expensive upfront cost

📚 Tutorial on amortized optimization. Amos. FnT in ML, 2023. *also referred to as learned optimization

Brandon Amos 36



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

On LLM prompt optimization and amortization

Existing, widely-deployed uses of amortization

Foundations and Trends® in Machine Learning

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

Brandon Amos 37



AdvPrompter: amortized prompt optimization

On LLM prompt optimization and amortization

q
𝜃
𝑥 ≈ 𝑞

⋆
𝑥 = argmin

𝑞

ℒ(𝑥, 𝑞) prompt space

semantically 
similar prompts

𝑥

optimal modification

quality of LLM response

prompt modifications (suffixes)

input prompt

𝑥 𝑞
𝜃
(𝑥)

Train another LLM to amortize the prompt optimization

📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.

AdvPrompter

Brandon Amos 38



Fast, SOTA LLM jailbreaking

On LLM prompt optimization and amortization

📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.

ASR@N: Attack success rate in N trials

Brandon Amos 39



Improving LLM alignment

On LLM prompt optimization and amortization

Generate synthetic data with AdvPrompter, fine-tune model on it for better alignment

📚 AdvPrompter: Fast adaptive adversarial prompting for LLMs. Paulus*, Zharmagambetov*, Guo, Amos†, Tian†, arXiv 2024.

(AdvPrompter training iterations)

More robust after adv training

Brandon Amos 40



Back to general settings: discussion

Formulation, applications, and problem design — a lot is happening here
1. objective ℒ
2. constraints/regularizers (e.g., natural language)
3. downstream uses (e.g., alignment)

New optimization methods?   (also most methods can be amortized)

Extensions: multi-modal, vision-language models

Brandon Amos On LLM prompt optimization and amortization 41
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