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Generative models and media generation

Prompt: A red-faced monkey with white fur is bathing in a natural 
hot spring. The monkey is playing in the water with a miniature sail 
ship in front of it, made of wood with a white sail and a small rudder. 
The hot spring is surrounded by lush greenery, with rocks and trees.
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📚 Movie Gen: A Cast of Media Foundation Models. Meta, Oct 2024.
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2015 Deep Unsupervised Learning using Nonequilibrium Thermodynamics

2015 Variational inference with normalizing flows

2016 Density estimation using real NVP

2017 Masked autoregressive flow for density estimation

2018 Neural Ordinary Di↵erential Equations

2018 FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

2019 Generative modeling by estimating gradients of the data distribution

2020 Denoising Di↵usion Probabilistic Models

2020 Improved techniques for training score-based generative models

2021 Denoising Di↵usion Implicit Models

2021 Score-Based Generative Modeling through Stochastic Di↵erential Equations

2022 Flow Matching for Generative Modeling

2022 Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow

2022 Building Normalizing Flows with Stochastic Interpolants

(a non-exhaustive list)(many extensions/applications)
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Published as a conference paper at ICLR 2021

make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
all quantities of interest.

In terms of the benefits of parameterizing a flow as a gradient field, the convex potential is an
Rd

! R function, which is different from most existing discrete-time flows which are Rd
! Rd.

This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.

2 BACKGROUND: NORMALIZING FLOWS AND OPTIMAL TRANSPORT

Normalizing flows are characterized by a differentiable, invertible neural network f such that the
probability density of the network’s output can be computed conveniently using the change-of-
variable formula

pY (f(x)) = pX(x)

����
@f(x)
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����
�1

() pY (y) = pX(f�1(y))

����
@f

�1(y)
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where the Jacobian determinant term captures the local expansion or contraction of the density near
x (resp. y) induced by the mapping f (resp. f

�1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.

2
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(many extensions/applications)
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Source: Normalizing Flows in 100 Lines of JAX
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https://blog.evjang.com/2019/07/nf-jax.html
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make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
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Rd

! R function, which is different from most existing discrete-time flows which are Rd
! Rd.

This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.
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where the Jacobian determinant term captures the local expansion or contraction of the density near
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�1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
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Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
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Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.
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of approximating a probability distribution, it suffices to show that the distribution induced by a
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Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
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imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.

2

(data) (base)

Still use a ground-truth reference path (or interpolant)
Parameterize flow with an unconstrained neural network
(invertibility comes because the reference transport is invertible!!)

(many extensions/applications)



Flows: how we got here
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2015 Deep Unsupervised Learning using Nonequilibrium Thermodynamics

2015 Variational inference with normalizing flows

2016 Density estimation using real NVP

2017 Masked autoregressive flow for density estimation

2018 Neural Ordinary Di↵erential Equations

2018 FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

2019 Generative modeling by estimating gradients of the data distribution

2020 Denoising Di↵usion Probabilistic Models

2020 Improved techniques for training score-based generative models

2021 Denoising Di↵usion Implicit Models

2021 Score-Based Generative Modeling through Stochastic Di↵erential Equations

2022 Flow Matching for Generative Modeling

2022 Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow

2022 Building Normalizing Flows with Stochastic Interpolants

(a non-exhaustive list)

Match the ODE directly, generalize diffusion path

Still use a ground-truth reference path (or interpolant)
Parameterize flow with an unconstrained neural network
(invertibility comes because the reference path is invertible!)

(many extensions/applications)



another way of connecting probability measures
What is optimal transport?
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📚 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

📚 Optimal transport: old and new. Villani, 2009.
📚 Optimal Transport in Learning, Control, and Dynamical Systems.  Bunne and Cuturi, ICML 2023 Tutorial.
📚 Computational Optimal Transport. Peyré and Cuturi, Foundations and Trends in Machine Learning, 2019.
📚 Optimal Transport for Applied Mathematicians. Santambrogio, Birkhäuser, 2015
📚 Optimal Transport in Systems and Control. Chen, Georgiou, and Pavon, Annual Review of Control, Robotics, and Autonomous Systems, 2021.
📚 Optimal mass transport: Signal processing and machine-learning applications. Kolouri et al., 2017.

inf
𝑇∈𝒯(𝛼,𝛽)

∫

𝒳

𝑇 𝑥 − 𝑥
2

2
d𝛼(𝑥)

Monge’s problem (squared Euclidean)

find a map connecting 𝛼 and 𝛽   that   minimally displaces mass



Why optimal transport?
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(selected ML-focused highlights)

source: Bunne and Cuturi

Finds interpolating paths between populations
(e.g., for cell populations or multi-agent systems)
📚 Optimal-transport analysis of single-cell gene expression. Schiebinger et al., Cell 2019.
📚 Learning single-cell perturbation responses using neural optimal transport. Bunne et al., Nature Methods 2023.
📚 Likelihood Training of Schrödinger Bridge. Liu, Horng, Theodorou. ICLR 2022.
📚 Trajectorynet: A dynamic optimal transport network for modeling cellular dynamics. Tong et al., ICML 2020.

Couples measures without pairwise data
(e.g., for generative modeling, domain adaptation)
📚 Generative modeling via OT maps. Rout, Korotin, Burnaev. ICLR 2022.
📚 Neural Optimal Transport. Korotin et al., ICLR 2023
📚 Neural Monge map estimation. Jiaojiao Fan et al., TMLR 2023.
📚 Joint distribution optimal transportation for domain adaptation. Courty et al., NeurIPS 2017.
📚 Geometric Dataset Distances via Optimal Transport. Alvarez-Melis et al., NeurIPS 2020.

📚 Wasserstein GAN. Arjovsky, Chintala, Bottou, ICML 2017.
📚 Generalized sliced Wasserstein distances. Kolouri et al., NeurIPS 2019.
📚 Sliced wasserstein distance for learning GMMs. Kolouri et al.,  CVPR 2018.
📚 Convolutional Wasserstein Distances on Geometric Domains. Solomon et al., ToG 2015.

source: Generative Modeling with Optimal Transport Maps by Rout et al.

Defines a metric on the space of measures
(metricizes the space of weak convergence)

https://icml.cc/media/icml-2023/Slides/21559_VFbdtkE.pdf
https://arxiv.org/abs/2110.02999


Flows = “suboptimal” transport
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2015 Deep Unsupervised Learning using Nonequilibrium Thermodynamics

2015 Variational inference with normalizing flows

2016 Density estimation using real NVP

2017 Masked autoregressive flow for density estimation

2018 Neural Ordinary Di↵erential Equations

2018 FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

2019 Generative modeling by estimating gradients of the data distribution

2020 Denoising Di↵usion Probabilistic Models

2020 Improved techniques for training score-based generative models

2021 Denoising Di↵usion Implicit Models

2021 Score-Based Generative Modeling through Stochastic Di↵erential Equations

2022 Flow Matching for Generative Modeling

2022 Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow

2022 Building Normalizing Flows with Stochastic Interpolants

inf
𝑇∈𝒯(𝛼,𝛽)

∫

𝒳

𝑇 𝑥 − 𝑥
2

2
d𝛼(𝑥)

Monge’s problem (squared Euclidean)

find a map connecting 𝛼 and 𝛽   that   minimally displaces mass

Published as a conference paper at ICLR 2021

make use of existing tools from the convex optimization literature to cheaply and efficiently estimate
all quantities of interest.

In terms of the benefits of parameterizing a flow as a gradient field, the convex potential is an
Rd

! R function, which is different from most existing discrete-time flows which are Rd
! Rd.

This makes CP-Flow relatively compact. It is also arguably easier to design a convex architecture,
as we do not need to satisfy constraints such as orthogonality or Lipschitzness; the latter two usually
require a direct or an iterative reparameterization of the parameters. Finally, it is possible to incor-
porate additional structure such as equivariance (Cohen & Welling, 2016; Zaheer et al., 2017) into
the flow’s parameterization, making CP-Flow a more flexible general purpose density model.

2 BACKGROUND: NORMALIZING FLOWS AND OPTIMAL TRANSPORT

Normalizing flows are characterized by a differentiable, invertible neural network f such that the
probability density of the network’s output can be computed conveniently using the change-of-
variable formula

pY (f(x)) = pX(x)

����
@f(x)

@x

����
�1

() pY (y) = pX(f�1(y))

����
@f

�1(y)

@y

���� (1)

where the Jacobian determinant term captures the local expansion or contraction of the density near
x (resp. y) induced by the mapping f (resp. f

�1), and pX is the density of a random variable X .
The invertibility requirement has led to the design of many special neural network parameterizations
such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost

Jc(pX , pY ) = inf
eg:eg(X)⇠pY

EX⇠pX [c(X, eg(X))] (2)

When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
density), then the special case of c(x, y) = ||x � y||

2 has an interesting solution, a celebrated
theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.

2

(data) (base)

Flows “just” care about matching samples from the data
Transport path usually chosen to be easy and decomposable

Optimal transport requires searching over the entire transport space
Challenging optimization problem, no nice decompositions

(many extensions/applications)
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such as triangular maps, ordinary differential equations, orthogonality or Lipschitz constraints.

Universal Flows For a general learning framework to be meaningful, a model needs to be flexible
enough to capture variations in the data distribution. In the context of density modeling, this cor-
responds to the model’s capability to represent arbitrary probability distributions of interest. Even
though there exists a long history of literature on universal approximation capability of deep neural
networks (Cybenko, 1989; Lu et al., 2017; Lin & Jegelka, 2018), invertible neural networks gener-
ally have limited expressivity and cannot approximate arbitrary functions. However, for the purpose
of approximating a probability distribution, it suffices to show that the distribution induced by a
normalizing flow is universal.

Among many ways to establish distributional universality of flow based methods (e.g. Huang et al.
2018; 2020b; Teshima et al. 2020; Kong & Chaudhuri 2020), one particular approach is to approx-
imate a deterministic coupling between probability measures. Given a pair of probability densities
pX and pY , a deterministic coupling is a mapping g such that g(X) ⇠ pY if X ⇠ pX . We seek to
find a coupling that is invertible, or at least can be approximated by invertible mappings.

Optimal Transport Let c(x, y) be a cost function. The Monge problem (Villani, 2008) pertains
to finding the optimal transport map g that realizes the minimal expected cost
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When the second moments of X and Y are both finite, and X is regular enough (e.g. having a
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theorem due to Brenier (1987; 1991):

Theorem 1 (Brenier’s Theorem, Theorem 1.22 of Santambrogio (2015)). Let µ, ⌫ be probability

measures with a finite second moment, and assume µ has a Lebesgue density pX . Then there exists

a convex potential G such that the gradient map g := rG (defined up to a null set) uniquely solves

the Monge problem in eq. (2) with the quadratic cost function c(x, y) = ||x� y||
2
.

Some recent works are also inspired by Brenier’s theorem and utilize a convex potential to param-
eterize a critic model, starting from Taghvaei & Jalali (2019), and further built upon by Makkuva
et al. (2019) who parameterize a generator with a convex potential and concurrently by Korotin
et al. (2019). Our work sets itself apart from these prior works in that it is entirely likelihood-based,
minimizing the (empirical) KL divergence as opposed to an approximate optimal transport cost.
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(data) (base)

Flows “just” care about matching samples from the data
Transport path usually chosen to be easy and decomposable

Optimal transport requires searching over the entire transport space
Challenging optimization problem, no nice decompositions

2015 Deep Unsupervised Learning using Nonequilibrium Thermodynamics

2015 Variational inference with normalizing flows

2016 Density estimation using real NVP

2017 Masked autoregressive flow for density estimation

2018 Neural Ordinary Di↵erential Equations

2018 FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

2019 Generative modeling by estimating gradients of the data distribution

2020 Denoising Di↵usion Probabilistic Models
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2021 Denoising Di↵usion Implicit Models

2021 Score-Based Generative Modeling through Stochastic Di↵erential Equations
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2022 Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow

2022 Building Normalizing Flows with Stochastic Interpolants

Flows = “suboptimal” transport

Brandon Amos Transport and flows between distributions over distributions 14

all of this: single distribution to single distribution

(many extensions/applications)



To distributions over distributions
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single flow

𝑝 ⋅ 𝑐) — a distribution parameterized by 𝑐
 𝑝(𝑐) — a distribution over distributions

multiple flows

(Wasserstein manifold)

𝑝
𝑡=0

 and 𝑝
𝑡=1

 — distributions



Why distributions over distributions?
1. Text to image, video, or other media

between many text prompts
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Why distributions over distributions?
1. Text to image, video, or other media

between many text prompts

2. Image editing
between many pairs of images
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Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.
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Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.
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📚 Meta Optimal Transport. Amos et al., ICML 2023.



Why distributions over distributions?
1. Text to image, video, or other media

between many text prompts

2. Image editing
between many pairs of images

3. Scheduling and supply-demand allocations
between many initial conditions
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📚 Meta Optimal Transport. Amos et al., ICML 2023.



Why distributions over distributions?
1. Text to image, video, or other media

between many text prompts

2. Image editing
between many pairs of images

3. Scheduling and supply-demand allocations
between many initial conditions

4. Point cloud generation
each point cloud is an empirical distribution
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📚 Wasserstein Flow Matching. Haviv*, Pooladian*, Pe’er, Amos. 2024.



Why distributions over distributions?
1. Text to image, video, or other media

between many text prompts

2. Image editing
between many pairs of images

3. Scheduling and supply-demand allocations
between many initial conditions

4. Point cloud generation
each point cloud is an empirical distribution

5. Cellular transport
many pairs of untreated to treated populations

Brandon Amos Transport and flows between distributions over distributions 20

📚 Meta Flow Matching. Atanackovic et al., 2024.



Talk overview
📚 Primer on amortized optimization [Foundations and Trends in ML, 2023]

📚 Meta Optimal Transport [ICML 2023]

📚 Meta Flow Matching [2024]

📚 Wasserstein Flow Matching [2024]
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A crash course on amortized optimization

Transport and flows between distributions over distributions

𝑦
⋆
𝑥 ∈ argmin

𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

domain

optimal solution

slow thinking: solve from scratch (e.g., with search, planning)

fast thinking: rapidly predict the solution
why? can be 25,000+ times faster (in VAEs)

context (state of the world)cost

(amortization)

Brandon Amos 22

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

*also referred to as learned optimization



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Transport and flows between distributions over distributions

Existing, widely-deployed uses of amortization

Foundations and Trends® in Machine Learning

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.
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1. Define an amortization model ̂𝑦
𝜃
(𝑥) to approximate 𝑦⋆ 𝑥

     Example: a neural network mapping from 𝑥 to the solution

2. Define a loss ℒ that measures how well ̂𝑦 fits 𝑦⋆

     Regression: ℒ ̂𝑦
𝜃
≔𝔼

𝑝 𝑥
̂𝑦
𝜃
𝑥 −𝑦

⋆
𝑥

2

2

  Objective: ℒ ̂𝑦
𝜃
≔𝔼

𝑝 𝑥
𝑓 ̂𝑦

𝜃
𝑥

3. Learn the model with min
𝜃

 ℒ ̂𝑦
𝜃

How to amortize?

Transport and flows between distributions over distributions

📚 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.
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Why call it amortized optimization?

Transport and flows between distributions over distributions

training the model

to amortize: to spread out an upfront cost over time

fast approximate solutions

̂𝑦
𝜃
(𝑥) ≈ 𝑦

⋆
𝑥 ∈ argmin

𝑦∈𝒴(𝑥)

𝑓(𝑦;𝑥)

expensive upfront cost

📚 Tutorial on amortized optimization. Amos. FnT in ML, 2023.
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Talk overview
📚 Primer on amortized optimization [Foundations and Trends in ML, 2023]

📚 Meta Optimal Transport [ICML 2023]

📚 Meta Flow Matching [2024]

📚 Wasserstein Flow Matching [2024]
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Challenge: computing OT maps

Many OT problems are numerically solved
Improving OT solvers is active research

Solving multiple OT problems: even harder
Standard solution: independently solve

Monge (primal, Wasserstein-2)
𝑇
⋆
(𝛼, 𝛽) ∈ argmin

𝑇∈𝒯 𝛼,𝛽

𝔼
𝑥∼𝛼

𝑥− 𝑇 𝑥
2

2
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we also consider other/discrete OT formulations

📚 Meta Optimal Transport. Amos et al., ICML 2023.



Meta Optimal Transport
Idea: predict the solution to OT problems with amortized optimization
Simultaneously solve many OT problems, sharing info between instances

Why call it “meta”? Instead of solving a single OT problem, learn how to solve many

Monge (primal, Wasserstein-2)
𝑇
⋆
(𝛼, 𝛽) ∈ argmin

𝑇∈𝒯 𝛼,𝛽

𝔼
𝑥∼𝛼

𝑥 − 𝑇 𝑥
2

2

̂𝑇
𝜃
𝛼,𝛽  (parameterize dual potential via an MLP)

≈

28Transport and flows between distributions over distributionsBrandon Amos

we also consider other/discrete OT formulations

(via amortization)



Meta OT for Discrete OT (Sinkhorn)

29

📚 Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Marco Cuturi, NeurIPS 2013.

Transport and flows between distributions over distributionsBrandon Amos



Wasserstein adversarial regularization
📚 Wasserstein adversarial regularization for learning with label noise. Kilian Fatras et al., TPAMI 2021.

30Transport and flows between distributions over distributionsBrandon Amos

Setting: discrete OT for classification with label noise

OT is repeatedly solved across minibatches
Use Meta OT to learn better solutions



RGB color palette transport

Meta OT in continuous settings (W2GN)

31

↵ � T#↵ T�1
# �

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The Seine by Claude Monet
(1872), obtained from WikiArt.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer

W2GN Meta OT + W2GN

Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.

8

📚 Wasserstein-2 Generative Networks. Alexander Korotin et al., ICLR 2021.

Transport and flows between distributions over distributionsBrandon Amos
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Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.
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Figure 9: Meta ICNN (initial prediction). The sources are given in the beginning of app. D.
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More Meta OT color transfer predictions

Transport and flows between distributions over distributionsBrandon Amos

📚 Meta Optimal Transport. Amos et al., ICML 2023.



Conditional Monge Maps

Brandon Amos Transport and flows between distributions over distributions 33

image sources: Bunne and Cuturi

📚 Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurIPS 2022.

Focus: predicting drug treatments with OT
Idea: condition OT map on patient information

Methodological differences
Conditional Monge Maps ≈ Neural Processes
Predict conditioning inputs of the OT map

Meta OT ≈ Hyper-Networks
Predict parameters of an OT map

https://icml.cc/media/icml-2023/Slides/21559_VFbdtkE.pdf


Talk overview
📚 Primer on amortized optimization [Foundations and Trends in ML, 2023]

📚 Meta Optimal Transport [ICML 2023]

📚 Meta Flow Matching [2024]

📚 Wasserstein Flow Matching [2024]
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Background and Motivation
In many scientific problems, we want to understand the dynamics of many-body problems
(the dynamic evolution of interacting particles)

E.g. the dynamic processes cells undergo w.r.t. their environment and interactions with each other

35
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Background and Motivation
We want to model the dynamics of particles (or cells) at the population level. Many methods do this:

36

Existing methods typically only model the evolution of cells as independent particles.

Tong et al, ICML, 2020 Bunne et al, Nature Methods, 2023
Neklydov et al, ICML, 2024

Schiebinger et al, Cell, 2019
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Background and Motivation
We would also like a model that can generalize across measures (populations) 

37

Existing methods are typically restricted to a single measure (population, patient). At best can 
condition on different dynamics.

“unseen” 
population

.

.

.

Data we observe 𝑥
0
∼ 𝑝

0
𝑥
1
∼ 𝑝

1
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Problem setup
We want a model that can:
1. model the evolution of particles while taking into account their interactions
2. generalize across unseen populations

38

Main assumptions:

1. Coupled distribution/population pairs {(𝑝
0
(𝑥

0
|𝑖), 𝑝

1
(𝑥

1
|𝑖))}

𝑖=1

𝑁

2. The collected data undergoes a universal developmental process
 depends only on the population itself (e.g., interacting particles or communicating cells)

𝑥0 ∼𝑝0 𝑥1 ∼𝑝1

𝑝
0

𝑝
1
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From Flow Matching to Meta Flow Matching
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𝜕𝑝
𝑡
(𝑥)

𝜕𝑡
= −⟨𝛻

𝑥
, 𝑝

𝑡
(𝑥)𝑣

𝑡

∗
(𝑥)⟩

𝑝 ⋅ 𝑐) — a distribution parameterized by 𝑐
 𝑝(𝑐) — a distribution over distributions

(Wasserstein manifold)

𝑝
𝑡=0

 and 𝑝
𝑡=1

 — distributions

𝑝
𝑡



to Meta Flow Matching
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𝜕𝑝
𝑡
(𝑥)

𝜕𝑡
= −⟨𝛻

𝑥
, 𝑝

𝑡
(𝑥)𝑣

𝑡

∗
(𝑥, 𝑝

𝑡
)⟩

(from assumptions: end up just conditioning on 𝑝
0
)

𝑝 ⋅ 𝑐) — a distribution parameterized by 𝑐
 𝑝(𝑐) — a distribution over distributions

(Wasserstein manifold)

𝑝
𝑡=0

 and 𝑝
𝑡=1

 — distributions



Meta Flow Matching

41

(𝑥(𝑡
0
), 𝑡

0
)

𝜑(𝑝
0
, 𝜃)

ℎ

A model to learn to represent the 
population (GCN w/ knn edge pooling)

𝜑(𝑝
0
, 𝜃)

𝜑(𝑝
0
, 𝜃)

.

.

.

𝑣
𝑡
(𝑥,ℎ, 𝑐;𝜔)

(𝑥(𝑡
0
), 𝑡

0
)

𝑐

ℎ = 𝜑(𝑝
0
, 𝜃)

𝑣 approximates the population dynamics given
1. representation of the population, and
2. additional seen conditions 𝑐 (e.g. treatments applied to population)

𝜑(𝑝
0
, 𝜃) (GCN) captures interactions between particles
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Synthetic Example

43

We create a synthetic dataset of paired joint distributions {(𝑝
0
(𝑥

0
|𝑖), 𝑝

1
(𝑥

1
|𝑖))}

𝑖=1

𝑁

• We define a set of pre-defined target distributions 𝑝
1
(𝑥

1
|𝑖) for 𝑖 = 1,…,𝑁 (letter silhouettes)

• To get paired 𝑝
0
(𝑥

0
|𝑖)we simulate the forward diffusion process without drift 𝑥

0
∼𝒩(𝑥

1
, 𝜎)

• We reverse the diffusion process and learn the push-forward map from 𝑝
0
(𝑥

0
|𝑖) (source) to 𝑝

1
(𝑥

1
|𝑖) (target) for every index 𝑖

source target

Train: 24 letters (excluding ‘Y’ and ‘X’), each in 10 orientations

source target

Test: ’Y’ and ‘X’, each in 10 orientations
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Synthetic Example (FM baseline)

44

No population information

𝑣
𝑡
(𝑥;𝜔)

(𝑥(𝑡
0
), 𝑡

0
)

Predicts aggregate response over 
populations

FM cannot fit the training data and cannot 
generalize to unseen populations

Train

Test
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Synthetic Example (CGFM baseline)

45

“Perfect” conditions (naive)

CGFM cannot generalize to the conditions 
of unseen populations

A model 𝑣 to approximate the dynamical response 
given the population index/condition 𝑐

Perfect information on which environment the 
model is working with

𝑣
𝑡
(𝑥, 𝑐;𝜔)

(𝑥(𝑡
0
), 𝑡

0
)

𝑐

Train

Test
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Synthetic Example (MFM)
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Learned Conditions

MFM learns to represent entire populations, hence 
generalizes across unseen populations

𝑣
𝑡
(𝑥,ℎ;𝜔)

(𝑥(𝑡
0
), 𝑡

0
)

ℎ = 𝜑(𝑝
0
, 𝜃)

A model 𝑣 to approximate the dynamical response 
given a learned representation of the population

Train

Test
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Synthetic Example
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Biological data — patient-specific organoid drug screen dataset

48

(Zapatero et al, Cell, 2023)

10 patients, 11 treatments, varying doses, 3 different cell 
cultures … up to 2500 different environmental conditions! 
(we use ~ 1000)

.

.

.

Control Treated

𝑥
1
|𝑐
1

.

.

.

𝑥
1
|𝑐
2

𝑥
1
|𝑐
𝑘

Treatments

Data we observe

𝑥
0
∼ 𝑝

0
𝑥
1
∼ 𝑝

1

Each patient has ~ 250 different (control, 
treated) pairs Mass Cytometry
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Organoid Drug Screen Data
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“Replica” Split
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Patient Split
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Talk overview
📚 Primer on amortized optimization [Foundations and Trends in ML, 2023]

📚 Meta Optimal Transport [ICML 2023]

📚 Meta Flow Matching [2024]

📚 Wasserstein Flow Matching [2024]
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So far: distributions over pairs of distributions

Meta OT and Meta FM assume (coupled) pairs of distributions
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Control Treated

↵ � T#↵ T�1
# �

W2GN (converged, ground-truth)

Meta OT (Initial prediction)

Figure 6: Color transfers with a Meta ICNN on test pairs of images. The objective is to optimally
transport the continuous RGB measure of the first image ↵ to the second �, producing an invertible
transport map T . Meta OT’s prediction is ⇡1000 times faster than training W2GN from scratch.
↵ is Market in Algiers by August Macke (1914) and � is Argenteuil, The Seine by Claude Monet
(1872), obtained from WikiArt.

4.2 Discrete OT for supply-demand transportation on spherical data

We next set up a synthetic transport problem between supply and demand locations where the supply
and demands may change locations or quantities frequently, creating another Meta OT setting to be
able to rapidly solve the new instances. We specifically consider measures living on the 2-sphere
defined by S2 := {x 2 R3 : kxk = 1}, i.e. X = Y = S2, with the transport cost given by the
spherical distance c(x, y) = arccos(hx, yi). We then randomly sample supply locations uniformly
from Earth’s landmass and demand locations from Earth’s population density to induce a class of
transport problems on the sphere obtained from the CC-licensed dataset from Doxsey-Whitfield et al.
[2015]. Figure 5 shows that the predicted transport maps on test instances are close to the optimal
maps obtained from Sinkhorn to convergence. Similar to the MNIST setting, fig. 4 and table 1 show
improved convergence and runtime.

4.3 Continuous Wasserstein-2 color transfer

W2GN Meta OT + W2GN

Figure 7: Convergence on color transfer test
instances using W2GN. Meta ICNNs predicts
warm-start initializations that significantly im-
prove the (normalized) dual objective values.

The problem of color transfer between two im-
ages consists in mapping the color palette of one
image into the other one. The images are re-
quired to have the same number of channels, for
example RGB images. The continuous formula-
tion that we use from Korotin et al. [2019], takes
i.e. X = Y = [0, 1]3 with c being the squared
Euclidean distance. We collected ⇡200 public
domain images from WikiArt and trained a Meta
ICNN model from sect. 3.2 to predict the color
transfer maps between every pair of them. Fig-
ure 6 shows the predictions on test pairs and fig. 7
shows the convergence in comparison to the stan-
dard W2GN learning. Table 2 reports runtimes
and app. D shows additional results.
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What if we have unpaired distributions?
Still can learn a flow between them

Brandon Amos Transport and flows between distributions over distributions 54

📚 Wasserstein Flow Matching. Haviv, Pooladian, Pe’er, Amos. 2024.



Why would we have unpaired distributions?
Want to do generative modeling where the data points are inherently distributions
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biological data
point clouds



Related: flows for categorical distributions
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📚 Dirichlet Flow Matching. Stark et al., NeurIPS 2024.
📚 Fisher Flow Matching. Davis et al., ICML 2024.



How to flow on the Wasserstein manifold?
Use Riemannian flow matching with the geodesics (OT paths) on the Wasserstein manifold
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📚 Riemannian Flow Matching. Chen and Lipman, ICLR 2024.



Point cloud generation results
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Competitive and don’t require spatially discretizing the domain like most of the baselines



WFM also does interpolations and completions
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Flow from a distribution over lamps to a distribution over handbags

Completion using a flow trained over a distribution of planes
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