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Generative models and media generation

€ \lovie Gen: A Cast of Media Foundation Models. Meta, Oct 2024.

Brandon Amos

Prompt: A red-faced monkey with white fur is bathing in a natural

hot spring. The monkey is playing in the water with a miniature sail
ship in front of it, made of wood with a white sail and a small rudder.

The hot spring is surrounded by lush greenery, with rocks and trees.

Transport and flows between distributions over distributions



(many extensions/applications)

Flows: how we got here

(a non-exhaustive list)

Y

2022 @ Building Normalizing Flows with Stochastic Interpolants
|
2022 @ Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow
2022 @ Flow Matching for Generative Modeling
2021 @ Score-Based Generative Modeling through Stochastic Differential Equations
2021 @ Denoising Diffusion Implicit Models
2020 ® Improved techniques for training score-based generative models
2020 @ Denoising Diffusion Probabilistic Models
2019 @ Generative modeling by estimating gradients of the data distribution
2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
2018 @ Neural Ordinary Differential Equations
2017 ® Masked autoregressive flow for density estimation
2016 ® Density estimation using real NVP
2015 @ Variational inference with normalizing flows

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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Flows: how we got here

. - (a non-exhaustive list)
(many extensions/applications)

Y

2022 @ Building Normalizing Flows with Stochastic Interpolants 1
| () =px ([ (v))

2022 @ Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow pY y pX y

2022 @ Flow Matching for Generative Modeling

2021 @ Score-Based Generative Modeling through Stochastic Differential Equations

2021 @ Denoising Diffusion Implicit Models

2020 @ Improved techniques for training score-based generative models

2020 @ Denoising Diffusion Probabilistic Models

2019 @ Generative modeling by estimating gradients of the data distribution

2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

2018 @ Neural Ordinary Differential Equations

2017 ® Masked autoregressive flow for density estimation

2016 ® Density estimation using real NVP

2015 @ Variational inference with normalizing flows

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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Flows: how we got here

. - (a non-exhaustive list)
(many extensions/applications)

2022 T Building Normalizing Flows with Stochastic Interpolants af (y)

2022 @ Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow pY (y) pX (f (y) )

2022 @ Flow Matching for Generative Modeling

2021 @ Score-Based Generative Modeling through Stochastic Differential Equations
2021 @ Denoising Diffusion Implicit Models

2020 @ Improved techniques for training score-based generative models 0
2020 @ Denoising Diffusion Probabilistic Models 3

2019 @ Generative modeling by estimating gradients of the data distribution

]

2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models SOUI;CGI Nérmalizing FlOWS in 100 Lines of JAX

2018 @ Neural Ordinary Differential Equations para meterize with an invertible function
2017 ® Masked autoregressive flow for density estimation 47 lea n Wlth I,| kel| hOOd

2016 ® Density estimation using real NVP
2015 @ Variational inference with normalizing flows

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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https://blog.evjang.com/2019/07/nf-jax.html

Flows: how we got here

. - (a non-exhaustive list)
(many extensions/applications)

2022 T Building Normalizing Flows with Stochastic Interpolants af (y)

2022 @ Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow pY (y) pX (f (y) )
| (data) (base) y

2022 @ Flow Matching for Generative Modeling
2021 @ Score-Based Generative Modeling through Stochastic Differential Equations

2021 @ Denoising Diffusion Implicit Models

pz(ty)

[
(

4

2020 ® Improved techniques for training score-based generative models

2020 @ Denoising Diffusion Probabilistic Models

2019 @ Generative modeling by estimating gradients of the data distribution

2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models x pa ra mete rize With an OD E @i
2018 @ Neural Ordinary Differential Equations 4 lea n Wlth llkellhOOd

2017 @ Masked autoregressive flow for density estimation

2016 ® Density estimation using real NVP Zt == g(zt) ZO ~ pX

2015 @ Variational inference with normalizing flows

p(z(to))

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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Flows: how we got here

. - (a non-exhaustive list)
(many extensions/applications)

v DDPM

2022 @ Building Normalizing Flows with Stochastic Interpolants
| .
2022 @ Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow *‘
2022 @ Flow Matching for Generative Modeling
2021 @ Score-Based Generative Modeling through Stochastic Differential Equations * ;*; ‘ﬁ,
e

2021 @ Denoising Diffusion Implicit Models

2020 @ Improved techniques for training score-based generam
2020 @ Denoising Diffusion Probabilistic Models

2019 @ Generative modeling by estimating gradients of the data distribution

reference path SDE known
score decomposes nicely, learn via a decomposition

2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models
2018 @ Neural Ordinary Differential Equations
2017 @ Masked autoregressive flow for density estimation /
_ 1/2
2016 ® Density estimation using real NVP dX(t) T v logp (X<t> ) dt —|— 2 dBt
2015 @ Variational inference with normalizing flows .
X, =X, + €V, logp(X,)+ N(0, 2¢)

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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Flows: how we got here

. - (a non-exhaustive list)
(many extensions/applications)

2022 T Building Normalizing Flows with Stochastic Interpolants 1 af (y)
2022 T Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow pY (y) pX (f (y) ) ay

(data) (base)
2022 @ Flow Matching for Generative Modeling

2021 @ Score-Based Generative Modeling through Stochastic Differential Equations baCk to an ODE/ﬂOW Wlth the Ssame margina IS!!
2021 + Denoising Diffusion Implicit Models 4/ (probab| llty flow ODE’ |mpl|C|t models)

2020 @ Improved techniques for training score-based generative models

2020 ® Denoising Diffusion Probabilistic Models D D P M D DI M

2019 @ Generative modeling by estimating gradients of the data distribution *\ *‘

2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models * ' * .‘
2018 @ Neural Ordinary Differential Equations * * ,I.. 3 . )

2017 @ Masked autoregressive flow for density estimation

2016 + Density estimation using real NVP '* # * * *

2015 @ Variational inference with normalizing flows *

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics dX(t) — v log p (X(t) ) dt + 21/2 dBt ét — g(zt) ZO ~ pX
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Flows: how we got here

. - (a non-exhaustive list)
(many extensions/applications)

Y

2022 T Building Normalizing Flows with Stochastic Interpolants

2022 @ Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow

Match the ODE directly, generalize diffusion path

2022 @ Flow Matching for Generative Modeling

Still use a ground-truth reference path (or interpolant)

2021 @ Score-Based Generative Modeling through Stochastic Differential Equations Parameterize flow with an unconstrained neural network

2021 ® Denoising Diffusion Implicit Models (invertibility comes because the reference transport is invertible!!)
2020 ® Improved techniques for training score-based generative models *‘

2020 ® Denoising Diffusion Probabilistic Models * '

2019 @ Generative modeling by estimating gradients of the data distribution

2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models ” Il : ! i

_ *
Of ' (y) Y
S =px(f™
2016 ® Density estimation using real NVP Py (y) pX(f (y)) ay Z:t — g(Zt) 20~ Py

2018 @ Neural Ordinary Differential Equations

2017 @ Masked autoregressive flow for density estimation

(data) (base)

2015 @ Variational inference with normalizing flows

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics
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Flows and (optlmal )transport

. - (a non-exhaustive list)
(many extensions/applications)

20X . . ) ) €& optimal transport: old and new. Villani, 2009.

uilding Normalizing Flows with Stochastic Interpolants . X . . i .

| € optimal Transport in Learning, Control, and Dynamical Systems. Bunne and Cuturi, ICML 2023 Tutorial.

2022 @ Flow Straight and Fast: Learning to Generate and Transfer Data with Rectified Flow € Computational Optimal Transport. Peyré and Cuturi, Foundations and Trends in Machine Learning, 2019.
€& optimal Transport for Applied Mathematicians. Santambrogio, Birkhaduser, 2015

2022 ® Flow Matching for Generative Modeling €& Optimal Transport in Systems and Control. Chen, Georgiou, and Pavon, 2021.

€ optimal mass transport: Signal processing and machine-learning applications. Kolouri et al., 2017.
2021 @ Score-Based Generative Modeling through Stochastic Differential Equations

9 .
20216 Dencising Diffsion Impict Mocde Monge’s problem (squared Euclidean)
2020 ® Improved techniques for training score-based generative models
C 2
2020 @ Denoising Diffusion Probabilistic Models ]-nf H T<x) — X H 2d0(($)
TGT(O‘wB ) x
2019 @ Generative modeling by estimating gradients of the data distribution f T

A

“ind map connecting o and B\ that ‘minimally displaces mass

2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

2018 @ Neural Ordinary Differential Equations

2017 ® Masked autoregressive flow for density estimation e

2016 ® Density estimation using real NVP )
| o & YT
2015 @ Variational inference with normalizing flows :

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics

€ on amort/zmg convex conjugates for optimal transport. Amos, ICLR 2023.
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Flows and (optlmal )transport

: N (a non-exhaustive list)
(many extensions/applications)

202>K L » . : € Optimal transport: old and new. Villani, 2009.

uilding Normalizing Flows with Stochastic Interpolants ) i ) . : :

| & optimal Transport in Learning, Control, and Dynamical Systems. Bunne and Cuturi, ICML 2023 Tutorial.

0 ) Ay Szt cime) [Fesis (Lesmiis (@ Cnereie e Tensts DEie wih Reaiz] Hem & Computational Optimal Transport. Peyré and Cuturi, Foundations and Trends in Machine Learning, 2019.
& optimal Transport for Applied Mathematicians. Santambrogio, Birkhauser, 2015

2022 ® Flow Matching for Generative Modeling €& optimal Transport in Systems and Control. Chen, Georgiou, and Pavon, 2021.

€& optimal mass transport: Signal processing and machine-learning applications. Kolouri et al., 2017.
2021 @ Score-Based Generative Modeling through Stochastic Differential Equations

Monge’s problem (squared

2021 @ Denoising Diffusion Implicit Models

2020 @ Improved techniques for training score-based generative models

2020 ® Denoisi

2019 @ Generat

2018 ® FFJORD: Free-form Continuous Dynamics for Scalable Reversible Generative Models

2018 ® Neural Ordinary Differential Equations

2017 ® Masked autoregressive flow for density estimation 8. ) A
2016 ® Density estimation using real NVP ; II . \
| . i W ‘ i Y
2015 @ Variational inference with normalizing flows % ‘ . j
| g & NN

2015 @ Deep Unsupervised Learning using Nonequilibrium Thermodynamics :
€ on amortzzmg convex conjugates for optimal transport. Amos, ICLR 2023.
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To distributions over distributions

single flow multiple flows

Pa(X)

(Wasserstein manifold)

Py—o and p,_; — distributions p(+|c) — a distribution parameterized by ¢
p(c) — adistribution over distributions

Brandon Amos Transport and flows between distributions over distributions 12



Why distributions over distributions?

1. Texttoimage, video, or other media
between many text prompts

Brandon Amos Transport and flows between distributions over distributions
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Why distributions over distributions?

1. Texttoimage, video, or other media
between many text prompts

2. Image editing
between many pairs of images

N N

€ \eta Optimal Transport. Amos et al., ICML 2023.

Brandon Amos Transport and flows between distributions over distributions
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Why distributions over distributions?

Optimal supply to demand transport on the sphere

1. Texttoimage, video, or other media . . - .
between many text prompts o . .. o
2. Image editing -

between many pairs of images

3. Scheduling and supply-demand allocations
between many initial conditions

€ Veta Optimal Transport. Amos et al., ICML 2023.

Brandon Amos Transport and flows between distributions over distributions
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Why distributions over distributions?

1. Texttoimage, video, or other media e . & Ll
between many text prompts i b *nw / |
- » -

2. Image editing
between many pairs of images

3. Scheduling and supply-demand allocations
between many initial conditions

4. Point cloud generation
each point cloud is an empirical distribution

€ |ygsserstein Flow Matching. Haviv*, Pooladian*, Pe’er, Amos. 2024.

Brandon Amos Transport and flows between distributions over distributions 16



Why distributions over distributions?

Text to image, video, or other media
between many text prompts Each patient has ~ 250 different

(control, treated) pairs

/\

L] L] X Np x Np
Image edltlng . . Ct;)ntrz)l Trleateld
between many pairs of Images Datawe observe

ég Treatments

Scheduling and supply-demand allocations @

between many initial conditions Y @ .l
..... 9 >

Point cloud generation

each point cloud is an empirical distribution Y @ —;; ® xlg
..... 9 >

Cellular transport

) ) € \eta Flow Matching. Atanackovic et al., 2024.
many pairs of untreated to treated populations

Brandon Amos Transport and flows between distributions over distributions 17



Talk overview

¥ Meta Optimal Transport [ICML 2023]

Y

€ Meta Flow Matching [2024]

Brandon Amos

Transport and flows between distributions over distributions
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Challenge: computing OT maps

€ Veta Optimal Transport. Amos et al., ICML 2023.
Monge (primal, Wasserstein-2)

T*(e, B) € argmin B, [z —T(2)]3
TeT (o,B)

Optimally transport between MNIST digits

)
C
~

we also consider other/discrete OT formulations

S

D
Many OT problems are numerically solved <
Improving OT solvers is active research pa
Solving multiple OT problems: even harder 9
Standard solution: independently solve
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Meta Optimal Transport

Idea: predict the solution to OT problems with amortized optimization
Simultaneously solve many OT problems, sharing info between instances

(via amortization)

Why call it “meta”? Instead of solving a single OT problem, learn how to solve many

Monge (primal, Wasserstein-2) '
T*(a,8) € argmin E___ |z — T (z)|5 | T (a,8))

22 TeT (a,B) . Ty(a, B)

fg (cx, B) (parameterize dual potential via an MLP)

[ we also consider other/discrete OT formulations | ‘

Brandon Amos Transport and flows between distributions over distributions 20




Meta OT for Discrete OT (Sinkhorn)

€ Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Marco Cuturi, NeurlPS 2013.

MNIST
MNIST ( D
: - - L - 33 | e
/7 7339I999IF3I3 _ 02
Y (8%
Spherical 0.0 =1 . u
Optimal supply to demand transport on the sphere 0 5 10 15 20 25
) R Sinkhorn Iterations D
s v ~ : - L \ J
" AL Spherical _ ' .
, ot . Table 1. Sinkhorn runtime (seconds) to reach a marginal error of
1.0 - 10~2. Meta OT’s initial prediction takes =~ 5 - 10~° seconds. We
- o report the mean and std across 10 test instances.
- Initialization | MNIST Spherical
= 0.5~ ‘
£3) Zeros (tyeros) | 4.5-1073 £1.5-107°  0.88 £0.13
- ” Gaussian | 4.1-1073 £1.2-10°°  0.56 £9.9- 102
- - | ——— Meta OT (tpera) | 2.3-1073 £9.2-10°¢ 7.8-1072 £3.4-10 2
OO | 1 T T T —
0 200 400 600 800 1000 Improvement (teros/tMeta) | 1.96 11.3
. Sinkhorn Iterations
- e R Initialization (M Zeros M Gaussian (Thornton and Cuturi, 2022) H Meta OT)
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Marginal Error

10

10

10“

1071

Wasserstein adversarial regularization

€ \asserstein adversarial reqularization for learning with label noise. Kilian Fatras et al., TPAMI 2021.

Setting: discrete OT for classification with label noise

OT is repeatedly solved across minibatches
Use Meta OT to learn better solutions

Noise level: 0.0

5[7) 5 1()() 12 5 () ()
Epochs

Zero initialization (M +5 iterations
Brandon Amos

| %f\

Fig. 1: AR vs. WAR. Given a number of samples, both
methods regularize along adversarial directions (arrows in
the left panel), leading to updated decision functions (right
panel). While both regularizations prevent the classifier to
overfit on the noisy labelled sample, AR also tends over-
smooth between similar classes (wolfdog and husky), while
WAR preserves them by changing the adversarial direction.

Noise level: 0.2 Noise level: 0.4

Adversarial directions

O+@® Lowcost
O+@ High cost

" Classifier

50 7" 1()0 125 150 0 25 50

1 1
i 75 100 125 150 u
Epochs Epochs wronly spoes

— Classical adv dir
—» WAR adv dir

M +20 iterations)  Meta OT (M Prediction M +5 iterations)

Transport and flows between distributions over distributions
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Meta OT in continuous settings (W2GN)

€ |\/gsserstein-2 Generative Networks. Alexander Korotin et al., ICLR 2021.

RGB color palette transport

. 1.00 oy
o I6] Tya T, p 2 -
e : - » , S 0.75 P e e
2 | | | |
] e
Sh | | | |
B025-
A

- ]‘ ,,,,,,,,,,,,,,,,,,,,, e ‘I ,,,,,,,,,,,,,,,,,,,, 1‘,,,,

0.00 : i
0 500 1000 1500 2000
W2GN Iterations
Initialization (M Standard M Meta OT)
| Tter ~ Runtime (s) Dual Value

MetaOT | None 3.5-1073 +2.7-107* 0.90 +6.08 - 102

+ W2GN | 1k 0.93 +2.27-1072 1.0 +2.57-1073

2k 1.84 +3.78 - 1072 1.0 +5.30- 1073
W2GN | 1k 0.90 +£1.62-10"2 0.96 +2.62 - 10~ 2
2k 1.81 +3.05-10"2 0.99 +1.14-1072

Brandon Amos Transport and flows between distributions over distributions
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More Meta OT color transfer predictions

€ \eta Optimal Transport. Amos et al., ICML 2023.

Brandon Amos Transport and flows between distributions over distributions 24



Conditional Monge Maps

€ Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurlPS 2022.

a. .. by scalar b. .. by covariate c. .. by action
e.g., time-course or dosage levels e.g., metadata or identifiers e.g., perturbations or decisions
Focus: predicting drug treatments with OT e target measures m o0l VY imes
U Vo S a;

Idea: condition OT map on patient information  measure Vi1 Pyr  fae |
dea: condition OT map on patient informatio . e hr &y P NP
7’ Vi_1 covariate Cr, 1 v combination a;;
Methodological differences - leam To (t)ghs - leam To (e )31 team To((ai, az))su
Conditional Monge Maps ~ Neural Processes

Predict conditioning inputs of the OT map d”‘iz, T = TagfﬂfédC(x T(x))dp(x)
Meta OT ~ Hyper-Networks u @ @Q v
Predict parameters of an OT map x =~ @ &
@ @@@ @.'5“‘,‘ &=
— before treatment — neural optimal transport — after treatment —

image sources: Bunne and Cuturi

Brandon Amos Transport and flows between distributions over distributions 25
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https://icml.cc/media/icml-2023/Slides/21559_VFbdtkE.pdf

Talk overview

€ Meta Optimal Transport [ICML 2023]

€ Meta Flow Matchmg [2024]

€ Wasserstein Flow Matching [2024]

Brandon Amos

Transport and flows between distributions over distributions
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Background and Motivation

In many scientific problems, we want to understand the dynamics of many-body problems
(the dynamic evolution of interacting particles)

E.g. the dynamic processes cells undergo w.r.t. their environment and interactions with each other

Brandon Amos Transport and flows between distributions over distributions
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Background and Motivation

We want to model the dynamics of particles (or cells) at the population level. Many methods do this:

Observed
perturbation,

FiR X [0, - R"

—0—> -

Y

% . 2t + [ Syt =Y = S,
. L Yol ~$

T Ty T T xT Pe [=I)

ture Methods, 2023
Tongetal, [CML, 2020 Bunne et al, Nature Methods, Neklydov et al, ICML, 2024

Schiebinger et al, Cell, 2019

Existing methods typically only model the evolution of cells as independent particles.

Brandon Amos Transport and flows between distributions over distributions 28



Background and Motivation

We would also like a model that can generalize across measures (populations)

Data we observe g ~ Do Ty~ Py
>
2.5 ()
1 = >
>
(] >

...........................

Existing methods are typically restricted to a single measure (population, patient). At best can
condition on different dynamics.

Brandon Amos Transport and flows between distributions over distributions
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Problem setup

We want a model that can:
1. model the evolution of particles while taking into account their interactions

2. generalize across unseen populations o
2y E=
1Yy (=

Main assumptions:

1. Coupled distribution/population pairs { (py (zo7), py (21]7)) 1Y,
2. The collected data undergoes a universal developmental process
depends only on the population itself (e.g., interacting particles or communlcatlng cells)

O:g

Brandon Amos Transport and flows between distributions over distributions



From Flow Matching

Op; ()
ot

= —(V_,p;(x)vi(x))

Pa(X)

(Wasserstein manifold)

Brandon Amos Transport and flows between distributions over distributions
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From Flow Matching to Meta Flow Matching

Op; ()
ot

— (V. p, (@)} (2)) PL) (7, pu(yi (e.p)

(from assumptions: end up just conditioning on po)

Pa(X)

(Wasserstein manifold)

Brandon Amos Transport and flows between distributions over distributions 32



Meta Flow Matching

population (GCN w/ knn edge pooling)

. 0
90<p 0 8) N : U approximates the population dynamics given
o 1. representation of the population, and
* 2. additional seen conditions C (e.g. treatments applied to population)
— ° N
Sp(pm 9) * C S
@ > |- : > vy (@, by e
- : ;
- . h = p(py, 0
@ @y, 0) :

©(pg, 0) (GCN) captures interactions between particles .
Brandon Amos Transport and flows between distributions over distributions 33



Algorithm 1: Meta Flow Matching (training)

Input : dataset of populations {(7(zo, 1 | i),c*)}; and treatments c’, and parametric models
for the velocity, v;(-;w), and population embedding ¢ (+; 0).
for training iterations do

@ ~Uf1,ny(2) // sample batch of n populations ids
(:L'{),:U{,tj) ~ T(xg, x7 | i)U[O,l](t) // sample N, particles for every population 1
fe(zh,z]) « (1 — )z} + /2

h(6) < gp({xé};.\’:il;o) // embed population {z)}};. For CGFM h < i, FM h <+ 0.
. . . 4 . . 2
Lurn(w,60) 15, 25|14 fulad, 2]) — vus (fulad, 2) | (), &%) |

w’ < Update(w, V,Lmem(w, 0)) // evaluate new parameters of the flow model
0 «+ Update(H,VgﬁMFM(w,H)) // evaluate new parameters of the embedding model

w<+w', <60 // update both models

return v; (-; w*), p(-;6%)

Brandon Amos Transport and flows between distributions over distributions 34



Synthetic Example

We create a synthetic dataset of paired joint distributions {(pO (a:o |Z) yP1 (:Ul |Z))},fi1
* We define a set of pre-defined target distributions P (:Ul |Z) fort = 1, ..., N (letter silhouettes)
* To get paired P ({E0|Z) we simulate the forward diffusion process without drift T ~ N(xl, 0)

* We reverse the diffusion process and learn the push-forward map from p0($0|i) (source) to Dq (:Ul |Z) (target) for every index ¢

Train: 24 letters (excluding ‘Y’ and ‘X’), each in 10 orientations Test: 'Y’ and ‘X’, each in 10 orientations

source target source target

O
L]

v

2

v

A\
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Synthetic Example (FM baseline)

No population information
source t=0.50 t=1.00 target

P Predicts aggregate response over
: populations

(z(tp), to)

L
Y — )
r

AP R

Train

Test

FM cannot fit the training data and cannot
generalize to unseen populations

Brandon Amos Transport and flows between distributions over distributions



Train

Test

Synthetic Example (CGFM baseline)

“Perfect” conditions (naive)
source t=0.50 t=1.00

target

S e
o
.

Lt
Y
y

CGFM cannot generalize to the conditions
of unseen populations

Brandon Amos

(z(tg), to)

A model ¥ to approximate the dynamical response
given the population index/condition C

Ut <:Ua C; w)

Perfect information on which environment the
model is working with

Transport and flows between distributions over distributions



Synthetic Example (MFM)

Learned Conditions

A model U to approximate the dynamical response
.SOUFCG t=0.50 t=1.00 target given a learned representation of the population

' m , to)
L
N e e

o

Train

Test

MFM

MFM learns to represent entire populations, hence
generalizes across unseen populations

Brandon Amos Transport and flows between distributions over distributions 38



Train

Synthetic Example

source  t=0.50

t=1.00 target

source

t=0.50

t=1.00

target

source

target

oSt s

3o gedn,

3o

w (vl

t=0.50

t=1.00

L
N¥

-
L
Y
y

E
¥
3 %
= - 2
CGFM
Train Test (X’s) Test (Y’s)

Wy W, MMD (x1073) Wy W, MMD (x10~%) Wy W, MMD (x10~3)
FM 0.209 4+ 0.000  0.277 & 0.000 2.54+0.00 0.234=40.000 0.309 =+ 0.000 2.45+0.00 0.23840.000 0.316 & 0.000 3.32+£0.01
FMYN 0.806 4 0.000  0.960 4 0.000 31.68+0.00 0.764 +0.000 0.931 +0.000 25.0440.00 1.030 4+ 0.000 1.228 4 0.000 45.36 4 0.00
CGFM 0.090 + 0.000  0.113 % 0.000 0.25+0.00 0.334=+0.000 0.407 £ 0.000 5.55+0.00 0.327 4 0.000 0.405 =+ 0.000 6.85 £ 0.00
CGFMY' N 0.156 4+ 0.025  0.201 4 0.027 1.024+0.39 0.849 +0.004 0.993 +0.003 35.0840.75 1.06240.011 1.229 4+ 0.010 55.66 & 0.76
MFMYN (k=0) 0.1484+0.003 0.195 =+ 0.010 0.94+0.11 0.347+0.011 0.431 +0.012 6.47 £0.44 0.40240.011 0.485 + 0.010 10.92 £0.18
MFMYN (k=1) 0.15440.004 0.208 +0.010 0.91+£0.01 0.34940.023 0.433 & 0.023 6.53£0.52 0.39140.035 0.477 £ 0.041 10.71 + 1.86
MEMYAN (k =10) 0.151+0.013 0.197 £0.015 0.94+0.15 0.34340.020 0.427 +0.019 6.38+0.67 0.413+0.018 0.502 & 0.024 11.93 +1.14
MFMYN (k = 50) 0.17440.005 0.232 = 0.006 1.40+£0.13 0.363+0.010 0.449 +0.013 7.464+0.44 0.446 £0.021 0.536 & 0.028 13.40 +0.23
MFM (k = 0) 0.081 + 0.003  0.100 + 0.004 0.16 +0.06 0.202 +0.002 0.249 + 0.003 2.2940.05 0.218+£0.001 0.262 & 0.002 3.79 £0.11
MFM (k = 1) 0.082 £ 0.001 0.101 = 0.002 0.16 £0.01 0.205+ 0.008 0.251 + 0.008 2.38+0.22 0.21540.006 0.258 & 0.007 3.78 £0.25
MFM (k = 10) 0.088 4+ 0.002  0.109 & 0.003 0.21+£0.01 0.201 & 0.006 0.248 + 0.006 2.20+£0.15 0.208 4 0.003 0.252 & 0.002 3.55 +0.06
MEFM (k = 50) 0.092 4+ 0.004 0.116 & 0.004 0.25+0.06 0.206 4 0.008 0.257 & 0.008 2.18+0.25 0.204 & 0.005 0.249 + 0.006 3.14+0.18
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Biological data — patient-specific organoid drug screen dataset

Each patient has ~ 250 different (control,
treated) pairs

Mass Cytometry
A
A e~
CRC PDO-CAF Drug Array TOBis 0 Po
(2,520 3D Cultures) Mass Cytometry ContrOI
——— Data we observe

Control

5-FU

5-FU + Cetux. e
SN-38 (e oo

SN-38 + Berzosertib
SN-38 + 5-FU

SN-38 + Cetux. = o '..
| f J"Rep2  ppo .. o
SN-38 + 5-FU + Cetux. D . .
- .

A |e%ee

Treatments

Oxaliplatin
Cetux.

(Zapatero et al, Cell, 2023)

10 patients, 11 treatments, varying doses, 3 different cell
cultures ... up to 2500 different environmental conditions!
(we use ~ 1000)
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Organoid Drug Screen Data

Treatment Conditioning e P & P
p(Jer) Replica split —. T GER

In-Distribution ® ° ° ®

cell microenvironment o o e o e o e o

C2
Po ..... . pl(-|02)

. \_Ck g Patient split @ & @ -
‘ : pa(-ler) Out-Of-Distribution
cell microenvironment e o e o o o e o
507 ° o ° °
e o e o e o o o

Cell samples (pg, p1(.|c;)) = * Train o Test
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‘“Replica” Split

Wi(l) Wa(l) MMD (x107%) () r*(1) Wi(l) Wa({) MMD (x107%) ({) (1)
FM 3.925+0.019 4.041 +0.023 3.76+0.26 0.952+0.007 3.961 £0.036 4.089 £ 0.042 5.90£0.25 0.941 +0.010
FMY N 6.908 +0.037 7.181+£0.033 57.70£0.75 0.639+0.005 6.972+0.022 7.244 + 0.022 60.39 £0.98 0.642 £ 0.007
CGFM 3.864 +0.064 3.975+ 0.069 316+0.89 0.964 +0.006 4.087+0.063 4.211+ 0.066 8.84+0.75 0.938 + 0.006
CGFMYN 4.187 £0.008 4.340 £ 0.009 8.69+0.50 0.936 +0.002 6.852+0.045 7.11440.044 71.24 £3.71 0.666 +0.016
ICNN 4.286 +0.018 4.313+0.112 38.6+0.212 0.897£0.031 4.194+0.110 4.313+0.112 37.9+2.84 0.897 +0.008
MFMYN (k = 0) 3.940 £0.022 4.047 £ 0.023 3.91+0.18 0.959+0.006 3.896 +0.026 4.002 %+ 0.030 4.35+0.18 0.950 £+ 0.005
MFMYN (k =10) 3.976 £0.044 4.086 + 0.049 4.52+0.42 0.961 +£0.002 3.943+0.032 4.051+0.034 5.28 £0.25 0.952 +0.001
MFMYN (k =50) 3.968 £0.013 4.075+0.014 4.36 £0.44 0.961 +0.002 3.934+0.007 4.041 4 0.008 4.99+0.35 0.954 +0.000
MFMYN (k =100) 3.937 £0.014 4.040 £+ 0.015 3.94+0.00 0.963 +0.001 3.908 £0.030 4.011 4+ 0.033 4.68 +£0.52 0.953 £0.002
MFM (k = 0) 3.874+0.015 3.973 £+ 0.020 3.37+0.14 0.967 £ 0.003 3.880 +0.009 3.990 + 0.011 4.68 +£0.16 0.955 £ 0.002
MFM (k = 10) 3.896 +0.021  4.000 £ 0.021 3.82+0.12 0.964+0.001 3.899+0.013 4.012+0.011 5.13+£0.48 0.955 +0.001
MFM (k = 50) 3.888 +0.038 3.991 + 0.030 3.59+0.41 0.963 +0.001 3.900 £0.038 4.013 +0.034 5.06 £0.22 0.954 + 0.003
MFM (k = 100) 3.906 + 0.010 4.008 £ 0.005 4.05+0.38 0.964+0.002 3.898 +0.008 4.009 % 0.009 5.19£0.05 0.957 £ 0.000
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Patient Split

Wid) Wa(l)  MMD (x107%) (1) r2(1) Wi(l) Wa({) MMD (x10~%) ({) r?(1)
FM 3.985+0.0564 4.115+0.067 4.64+043 0.938+0.014 4.340+0.078 4.564+0.111 13.00 £0.67 0.865 +0.034
FMY N 6.892 +0.027 7.164 +0.033 57.03+1.00 0.655+0.003 7.1144+0.100 7.404 + 0.086 64.97 +£3.79 0.613 £ 0.008
CGFM 3.882 +0.019 3.999 + 0.020 3.16+0.59 0.9524+0.004 4.443+0.033 4.621+0.041 17.00 £1.03 0.899 + 0.008
CGFMY N 4.313 £0.077 4.480+ 0.081 11.51+£1.96 0.918 £0.004 7.135+£0.045 7.390 % 0.037 79.78 £4.67 0.637 +£0.010
ICNN 4.289 +£0.020 4.382+0.021 37.0+2.84 0.913+0.003 4.525+0.051 4.681+ 0.054 74.00 £ 0.57 0.862 +0.127
MFMYN (k = 0) 3.982 +0.014 4.095+0.015 5.04£0.36 0.9514+0.002 4.1774+0.042 4.355+0.048 10.53 £0.59 0.911 +0.001
MFMYN (k =10)  4.006 £0.008 4.119 4 0.012 5.13+£0.30 0.948 +0.001 4.156 £0.065 4.324 + 0.067 9.58 £1.63 0.912 +0.003
MFMYN (k =50) 3.982+£0.018 4.0954 0.016 4.744+0.21 0.951+0.002 4.15634+0.069 4.324+0.070 9.63+1.45 0.912 4+ 0.002
MFMYN (k = 100) 4.004 £0.012 4.119+0.014 5.19+0.43 0.949 +0.002 4.166 +=0.001 4.341 + 0.003 9.524+0.33 0.915+0.005
MFM (k = 0) 3.905 +0.005 4.012 4 0.006 4.18+0.25 0.958+0.001 4.209+0.007 4.380=+0.012 12.34 +£0.50 0.918 + 0.002
MFM (k = 10) 3.896 +0.033 4.005 £ 0.036 3.894+0.44 0.957+0.005 4.2164+0.090 4.395+ 0.098 11.99+£2.36 0.917 +0.005
MFM (k = 50) 3.902 £0.018 4.008 £ 0.022 4.20+0.17 0958 £ 0.000 4.214+4+0.017 4.396 £ 0.020 12.09 £ 0.75 0.916 £+ 0.002
MFM (k = 100) 3.884 £0.039 3.986 + 0.044 3.77+0.49 0.955+0.001 4.100£0.093 4.269 + 0.104 8.96 +1.88 0.917 £0.004
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Talk overview

€ Meta Optimal Transport [ICML 2023]

€ Meta Flow Matching [2024]

€ Wasserstem Flow Matchmg [2024]
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So far: distributions over pairs of distributions

Meta OT and Meta FM assume (coupled) pairs of distributions

source target
Control Treated > G
—_—D
_
> m
e B T;l B

W2GN (converged, ground-truth) = L,,_w ;, %®
g &R

it Tt
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What if we have unpaired distributions?

€ |\asserstein Flow Matching. Haviv, Pooladian, Pe’er, Amos. 2024.

Still can learn a flow between them

(we also can’t simply flatten them into a mixture)

Po
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Why would we have unpaired distributions?

Want to do generative modeling where the data points are inherently distributions

point clouds
biological data & s
y-. & \t‘ . & >
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Related: flows for categorical distributions

€ Dirichlet Flow Matching. Stark et al., NeurlPS 2024.
€ Fisher Flow Matching. Davis et al., ICML 2024.

_ pe(X | x1)
Noise > Data
Dir(1,1,1) Dir(2,1,1) Dir(3,1,1) Dir(«,1,1)
C T T T
[ 1Y A A A
C C C C
T G G G
T T T T
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How to flow on the Wasserstein manifold?

€ Riemannian Flow Matching. Chen and Lipman, ICLR 2024.

Use Riemannian flow matching with the geodesics (OT paths) on the Wasserstein manifold

Algorithm 1: Wasserstein FM Training Algorithm 2: BW(R?) generation
Data: base py € P(P(R?)), target Data: Trained f£V, step size h = 1/N
p1 € P(P(R?)), geo € {BW,PC} Init: N (mg, Xo) ~ po
Init: Parameters 6 of f§°° for k=0,...,N—1do
while not converged do (s, Sk) < BV ((mn, Zkn), kh)
Sample time t ~ 4(0,1) M(k+1)h — Mk + hsy,
Sample source measure p ~ po Ui < (I + hSk)
Sample target measure v ~ p; Ykrnn — UpZpn Uy
if geo is BW then ‘ Return: N (mys, Enn)
L pe < (my, ;) via equation 8
vy <= (1, BPW) via equation 9 Algorithm 3: Point-cloud generation
else Data: Trained f}°, step size h = 1/N
L Wt < Approximate via equation 4 Init: Xo ={X1,..., X} ~po
vy < Approximate via equation 7 fork=0,....N—1do
eo 2 A ~ ~
£0) « 1157 (e, t) — vell 12,0, | Xeron < Xin + b5 (Xin, kh)
| 0 < optimizer_step(d,4(0), Vol(0)) Return: Xy,
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Point cloud generation results

Competitive and don’t require spatially discretizing the domain like most of the baselines

“& { 8 Il >
G 3 \{%\ ‘\’g:‘ ' s
= . = Airplane Chair Car
CDJ EMD| CD| EMD| CD| EMD ]

i PointFlow 75.68 70.74 62.84 60.57 58.10 56.25
ey SoftFlow 7605 6580 59.21  60.05 64.77  60.09
pon " DPF-Net 75.18 65.55 62.00 58.53 62.35 54.48
Shape-GF 80.00 76.17 68.96 65.48 63.20 56.53
f\}% PVD 73.82 64.81 56.26 53.32 54.55 53.83
" % PSF 71.11 61.09 58.92 54.45 57.19 56.07
%,.&;g Z WFM (ours) 73.45 71.72 58.98 57.77 56.53 57.95

gt §:

Brandon Amos Transport and flows between distributions over distributions 50



WFM also does interpolations and completions

Flow from a distribution over lamps to a distribution over handbags

e i PRGNS T
Ty e @ NS ‘,“ AN
\}:‘;’, $ “\.}&"
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Transport and flows between distributions

over distributions
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