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Optimization: interacting with the world
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𝑦⋆ 𝑥 ∈ argmin
𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

context (or parameterization)objective

optimization variable constraints

optimal solution

vertical slices are optimization problems



Optimization and biology

1. Interactions (RL, control, experimental design, Bayesian optimization)
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Source: Integrating a tailored recurrent neural network with Bayesian 
experimental design to optimize microbial community functions
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(an incomplete and non-exhaustive list)



Optimization and biology

1. Interactions (RL, control, experimental design, Bayesian optimization)
2. Conformer and molecular generation
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𝑓 𝑓

Source: Ricky Chen, Stochastic Control for Large Scale Reward-Driven Generative Modeling
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Optimization and biology

1. Interactions (RL, control, experimental design, Bayesian optimization)
2. Conformer and molecular generation
3. Transport and flows between cells (to recover the development process)
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(an incomplete and non-exhaustive list)

Image source: Bunne et al.

(find a transport path between populations of cells)
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(find a transport path between populations of cells)Challenge: solving a single optimization problem is hard



Optimization and biology

1. Interactions (RL, control, experimental design, Bayesian optimization)
2. Conformer and molecular generation
3. Transport and flows between cells (to recover the development process)
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context (or parameterization)objective

optimization variable constraints

optimal solution

(an incomplete and non-exhaustive list)

Image source: Bunne et al.

(find a transport path between populations of cells)Challenge: solving a single optimization problem is hard

This talk: learn a fast solver (amortization)



Optimization and fast and slow thinking
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slow thinking: solve from scratch (e.g., with search, planning)

fast thinking: rapidly predict the solution
why? can be 25,000+ times faster (in VAEs)

(amortization)



Why call it amortized optimization?
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training the model

to amortize: to spread out an upfront cost over time

fast approximate solutions

ො𝑦𝜃(𝑥) ≈ 𝑦⋆ 𝑥 ∈ argmin
𝑦∈𝒴(𝑥)

𝑓(𝑦; 𝑥)

expensive upfront cost

 Tutorial on amortized optimization. Amos. FnT in ML, 2023.

(vertical slices are optimization problems)

*also referred to as learned optimization



1. Define an amortization model ො𝑦𝜃(𝑥) to approximate 𝑦⋆ 𝑥
     Example: a neural network mapping from 𝑥 to the solution

2. Define a loss ℒ that measures how well ො𝑦 fits 𝑦⋆

     Regression: ℒ ො𝑦𝜃 ≔ 𝔼𝑝 𝑥 ො𝑦𝜃 𝑥 − 𝑦⋆ 𝑥 2
2

  Objective: ℒ ො𝑦𝜃 ≔ 𝔼𝑝 𝑥 𝑓 ො𝑦𝜃 𝑥

3. Learn the model with min
𝜃

 ℒ ො𝑦𝜃

How to amortize? The basic pieces
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 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

(vertical slices are optimization problems)



Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)

Variational inference (VAEs, semi-amortized VAEs)

Meta-learning (HyperNets, MAML)

Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)
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Existing, widely-deployed uses of amortization

Foundations and Trends® in Machine Learning

 Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

Brandon Amos



Overview

Introduction and motivation for amortization

Warmup: reinforcement learning as amortization

Learning update rules
    Learning to learn            by gradient descent by gradient descent
    Learning to learn without gradient descent by gradient descent

Meta Optimal Transport and Meta Flow Matching
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Reinforcement learning
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For every state 𝑥 encountered, maximize the value function (𝑄)

action action action

value

𝜋 𝑥1 𝜋 𝑥6 𝜋 𝑥12

𝜋 𝑥1 = argmax
𝑢

𝑄(𝑥1, 𝑢) 𝜋 𝑥6 = argmax
𝑢

𝑄(𝑥6, 𝑢) 𝜋 𝑥12 = argmax
𝑢

𝑄(𝑥12 , 𝑢)



Reinforcement learning
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For every state 𝑥 encountered, maximize the value function (𝑄)

action action action

value

𝜋 𝑥1 𝜋 𝑥6 𝜋 𝑥12

𝜋 𝑥1 = argmax
𝑢

𝑄(𝑥1, 𝑢) 𝜋 𝑥6 = argmax
𝑢

𝑄(𝑥6, 𝑢) 𝜋 𝑥12 = argmax
𝑢

𝑄(𝑥12 , 𝑢)

Independently solving from scratch is expensive!!
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action action action

value

𝜋 𝑥6

𝜋 𝑥1 = argmax
𝑢

𝑄(𝑥1, 𝑢) 𝜋 𝑥6 = argmax
𝑢

𝑄(𝑥6, 𝑢) 𝜋 𝑥12 = argmax
𝑢

𝑄(𝑥12 , 𝑢)

Policy learning

Learn 𝜋𝜃 to predict the solution for every state 
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Policy learning: amortize across states

maximize
𝜃

𝔼𝑥 𝑄(𝑥, 𝜋𝜃 𝑥 )

action action action

value

𝜋 𝑥1 = argmax
𝑢

𝑄(𝑥1, 𝑢) 𝜋 𝑥6 = argmax
𝑢

𝑄(𝑥6, 𝑢) 𝜋 𝑥12 = argmax
𝑢

𝑄(𝑥12 , 𝑢)



Policy learning: amortize across states

!! very general and powerful idea here

𝑄 could be any repeatedly-solved function (under mild conditions)
e.g., acquisition functions, other decision-making problems
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Foundations and Trends® in Machine Learning

maximize
𝜃

𝔼𝑥 𝑄(𝑥, 𝜋𝜃 𝑥 )



Overview

Introduction and motivation for amortization

Warmup: reinforcement learning as amortization

Learning update rules
    Learning to learn            by gradient descent by gradient descent
    Learning to learn without gradient descent by gradient descent

Meta Optimal Transport and Meta Flow Matching
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On learning update rules
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NeurIPS 2016 ICML 2017

(many others in the citation graph around these)



Learning to learn by gradient descent by 
gradient descent

Start with gradient descent:

Replace the update with a learned rule (an LSTM):

Brandon Amos On amortized optimization for RL, Bayesian optimization, and biology 20

Learn 𝑔 by amortizing across objectives:



Learning to learn by gradient descent by 
gradient descent

Start with gradient descent:

Replace the update with a learned rule (an LSTM):
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Learn 𝑔 by amortizing across objectives:

maximize
𝜃

𝔼𝑥 𝑄(𝑥, 𝜋𝜃 𝑥 )

!! identical to amortization for policies in RL



Learning to learn without gradient descent by gradient descent

Now start with black-box Bayesian optimization
(e.g., for experimental design)
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Source: Shallow Understanding on Bayesian Optimization, Ramraj Chandradevan



Learning to learn without gradient descent by gradient descent

Now start with black-box Bayesian optimization

Challenges (again):
1. Solving one optimization problem is hard 
2. Many acquisition function choices 
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Source: Shallow Understanding on Bayesian Optimization, Ramraj Chandradevan



Learning to learn without gradient descent by gradient descent

Now start with black-box Bayesian optimization

Challenges (again):
1. Solving one optimization problem is hard 
2. Many acquisition function choices 

This paper: learn the updates (again with amortization)
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standard Bayesian optimization

learned updates (solves fast)



Overview

Introduction and motivation for amortization

Warmup: reinforcement learning as amortization

Learning update rules
    Learning to learn            by gradient descent by gradient descent
    Learning to learn without gradient descent by gradient descent

Meta Optimal Transport and Meta Flow Matching
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Motivation: transporting between populations
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 Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurIPS 2022.

Image source: Bunne et al.

𝛼
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Image source: Bunne et al.

Motivation: transporting between populations
 Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurIPS 2022.

𝛼
𝛽



Optimal transport problems

𝛼, 𝛽 are measures       𝒞 𝛼, 𝛽  is the set of valid couplings     𝑇 is a transport map from 𝛼 to 𝛽

𝛼

𝛽 𝛼

𝛽

𝛼

𝛽

𝛼

𝛽

Monge (primal, Wasserstein-2)

𝑇⋆(𝛼, 𝛽) ∈ argmin
𝑇∈𝒞 𝛼,𝛽

𝔼𝑥∼𝛼 𝑥 − 𝑇 𝑥 2
2

28On amortized optimization for RL, Bayesian optimization, and biologyBrandon Amos

 On amortizing convex conjugates for optimal transport. Amos, ICLR 2023.
Image source:



Optimal transport problems

𝛼, 𝛽 are measures       𝒞 𝛼, 𝛽  is the set of valid couplings     𝑇 is a transport map from 𝛼 to 𝛽

Monge (primal, Wasserstein-2)

𝑇⋆(𝛼, 𝛽) ∈ argmin
𝑇∈𝒞 𝛼,𝛽

𝔼𝑥∼𝛼 𝑥 − 𝑇 𝑥 2
2

29On amortized optimization for RL, Bayesian optimization, and biologyBrandon Amos

Challenge: solving even once is hard



Real world: repeatedly solve
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Figure 4: Sinkhorn convergence on test instances. Meta OT successfully predicts warm-start initial-
izations that significantly improve the convergence of Sinkhorn iterations.

Sinkhorn (converged, ground-truth) Meta OT (initial prediction)

Figure 5: Test set coupling predictions of the spherical transport problem. Meta OT’s initial pre-
diction is ⇡ 37500 times faster than solving Sinkhorn to optimality. Supply locations are shown as
black dots and the blue lines show the spherical transport mapsT going to demand locations at the
end. The sphere is visualized with the Mercator projection.

4.1 Discrete OT between MNIST digits

Images provide a natural setting for Meta OT where the distribution over images provide the meta-
distribution D over OT problems. Given a pair of images ↵0 and ↵1, each grayscale image is
cast as a discrete measure in 2-dimensional space where the intensities define the probabilities of
the atoms. The goal is to compute the optimal transport interpolation between the two measures
as in, e.g., Peyré et al. [2019, §7]. Formally, this means computing the optimal coupling P ? by
solving the entropic optimal transport problem between ↵0 and ↵1 and computing the interpolates
as↵ t = (t projy + (1 − t) projx )# P

?, for t 2 [0,1], where projx (x, y) := x and projy (x, y) = y.

Weselected✏= 10− 2 as app. A shows that it gives interpolations that are not too blurry or sharp.

Our Meta OT model f̂ ✓ (sect. 3.1) is an MLP that predicts the transport map between pairs of
MNIST digits. We train on every pair from the standard training dataset. Figure 2 shows that even
without fine-tuning, MetaOT’spredicted Wasserstein interpolations between themeasures areclose
to the ground-truth interpolations obtained from running the Sinkhorn algorithm to convergence.
We then fine-tune Meta OT’s prediction with Sinkhorn as in algorithm 4. Figure 4 shows that the
near-optimal predictions can be quickly refined in fewer iterations than running Sinkhorn with the
default initialization, and table 1 shows the runtime required to reach the default threshold.
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Meta Optimal Transport

Idea: predict the solution to OT problems with amortized optimization
Simultaneously solve many OT problems, sharing info between instances

 Meta Optimal Transport. Amos, Cohen, Luise, Redko, ICML 2023.

Monge (primal, Wasserstein-2)

𝑇⋆(𝛼, 𝛽) ∈ argmin
𝑇∈𝒞 𝛼,𝛽

𝔼𝑥∼𝛼 𝑥 − 𝑇 𝑥 2
2

෠𝑇𝜃 𝛼, 𝛽  (parameterize dual potential via an MLP)

≈

31On amortized optimization for RL, Bayesian optimization, and biologyBrandon Amos

we also consider other/discrete OT formulations



Meta OT for Discrete OT (Sinkhorn)

32

 Meta Optimal Transport. Amos, Cohen, Luise, Redko, ICML 2023.
 Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Cuturi, NeurIPS 2013.

On amortized optimization for RL, Bayesian optimization, and biologyBrandon Amos



Meta Flow Matching
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 Meta Flow Matching. Atanackovic, Zhang, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov, ICLR, 2025.

Standard flow matching

min
𝜃

 𝔼𝑡,𝜋(𝑥0,𝑥1) 𝑢𝜃 𝑡, 𝑥𝑡 − 𝑢𝑡 𝑥 𝑥0, 𝑥1
2

 Flow Matching for Generative Modeling. Lipman et al., ICLR 2023.
 Flow Straight and Fast. Liu, Gong, Liu, ICLR 2023.
 Stochastic interpolants. Albergo et al., 2023.

Image source: Fjelde, Mathieu, Dutordoir.
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html

Meta flow matching

Amortize flows given conditioning 𝑐
(similar to text-conditioned diffusion)

min
𝜃

 𝔼𝑡,𝑐,𝜋(𝑥0,𝑥1|𝑐) 𝑢𝜃 𝑡, 𝑥𝑡|𝑐 − 𝑢𝑡 𝑥 𝑥0, 𝑥1, 𝑐 2

Cell data



Concluding thoughts
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𝑦𝜃 𝑥 ≈ 𝑦⋆ 𝑥 ∈ argmin
𝑦∈𝒞(𝑥)

𝑓(𝑦; 𝑥)

actions action space

optimal action contextcost

� A path towards autonomous machine intelligence. LeCun, 2022.

Actor

Image source:

Optimization-based reasoning a foundation for AI systems

Slow thinking (system 2): formulating and solving it
Fast thinking (system 1): amortizing and distilling it

Many instances of us manually amortizing

Future AI systems (?)
automatically formulating and amortizing optimization problems
understanding the right abstraction (latent space) and objectives
developing intrinsically and extrinsically motivated problems

amortized solution



Other amortization we’ve been up to
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amortized LLM attacks amortized OT, geodesicsamortized sampling



slides

On amortized optimization for RL, Bayesian 
optimization, and biology

Brandon Amos • Meta, NYC

bamos.github.io/presentations

Introduction and motivation for amortization

Warmup: reinforcement learning as amortization

Learning update rules
    Learning to learn            by gradient descent by gradient descent
    Learning to learn without gradient descent by gradient descent

Meta Optimal Transport and Meta Flow Matching


	Slide 1
	Slide 2: Optimization: interacting with the world
	Slide 3: Optimization and biology
	Slide 4: Optimization and biology
	Slide 5: Optimization and biology
	Slide 6: Optimization and biology
	Slide 7: Optimization and biology
	Slide 8: Optimization and fast and slow thinking
	Slide 9: Why call it amortized optimization?
	Slide 10: How to amortize? The basic pieces
	Slide 11: Existing, widely-deployed uses of amortization
	Slide 12: Overview
	Slide 13: Reinforcement learning
	Slide 14: Reinforcement learning
	Slide 15: Policy learning
	Slide 16: Policy learning: amortize across states
	Slide 17: Policy learning: amortize across states
	Slide 18: Overview
	Slide 19: On learning update rules
	Slide 20: Learning to learn by gradient descent by gradient descent
	Slide 21: Learning to learn by gradient descent by gradient descent
	Slide 22: Learning to learn without gradient descent by gradient descent
	Slide 23: Learning to learn without gradient descent by gradient descent
	Slide 24: Learning to learn without gradient descent by gradient descent
	Slide 25: Overview
	Slide 26: Motivation: transporting between populations
	Slide 27: Motivation: transporting between populations
	Slide 28: Optimal transport problems
	Slide 29: Optimal transport problems
	Slide 30: Real world: repeatedly solve
	Slide 31: Meta Optimal Transport
	Slide 32: Meta OT for Discrete OT (Sinkhorn)
	Slide 33: Meta Flow Matching
	Slide 34: Concluding thoughts
	Slide 35: Other amortization we’ve been up to
	Slide 36

