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Optimization: interacting with the world

optimal solution objective context (or parameterization) . y*(ilﬁ)
I | I '
y*(x) € argmin f (y; x) Y /
yeC(x) :
optimization variable constraints E
T

vertical slices are optimization problems
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optimal solution objective context (or parameterization)

Optlmlzatlon and biology () cargmin ;)

€ ()
(an incomplete and non-exhaustive list) optimization Variablle Jonstramts

1. Interactions (RL, control, experimental design, Bayesian optimization)
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Source: Integrating a tailored recurrent neural network with Bayesian
experimental design to optimize microbial community functions
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optimal solution objective context (or parameterization)

Optlmlzatlon and biology () Sargmin ()

(an incomplete and non-exhaustive list) optimization Variabl|e Y straints

1. Interactions (RL, control, experimental design, Bayesian optimization)
2. Conformer and molecular generation

FOXREF)-eo  f(:

low energy - stable structure - likely to appear — high probability
high energy - unstable structure - unlikely to appear = low probability

& E(a)

*

4 )=1OO

[!] Estimating this energy

w is also very expensive.

*

Source: Ricky Chen, Stochastic Control for Large Scale Reward-Driven Generative Modeling
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optimal solution objective context (or parameterization)

Optlmlzatlon and biology () Sargmin ()

(an incomplete and non-exhaustive list) optimization Variabl|e Clonstramts

1. Interactions (RL, control, experimental design, Bayesian optimization)

2. Conformer and molecular generation
3. Transport and flows between cells (to recover the development process)

6’@%-
(find a transport path between populations of cells)
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Image source: Bunne et al.
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optimal solution objective context (or parameterization)

Optlmlzatlon and biology () Sargmin ;)

(an incomplete and non-exhaustive list) optimization Variablle Y irainte

1. Interactions (RL, control, experimental design, Bayesian optimization)

2. Conformer and molecular generation
3. Transport and flows between cells (to recover the development process)

Challenge: solving a single optimization problem is hard
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Image source: Bunne et al.
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optimal solution objective context (or parame terization)

Optlmlzatlon and biology () Sargmin ()

(an incomplete and non-exhaustive list) B ———- Variabl|e Clonstramts

1. Interactions (RL, control, experimental design, Bayesian optimization)

2. Conformer and molecular generation
3. Transport and flows between cells (to recover the development process)

Challenge: solving a single optimization problem is hard

This talk: learn a fast solver (amortization)

cell data e @

Spac% @ @J tumor sample (-;53 @ Pie

of a patient

Image source: Bunne et al.
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Optimization and fast and slow thinking

f(y; )

slow thinking: solve from scratch (e.g., with search, planning)

(amortization)
fast thinking: rapidly predict the solution
why? can be 25,000+ times faster (in VAEs)
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Why call it amortized optimization?

8 Tutorial on amortized optimization. Amos. FnTin ML, 2023. *also referred to as learned optimization

[to amortize: to spread out an upfront cost over time]

Yo(x) = y*(x) € argmin f (y; x)
YEY(x)

f ;y; 4 a'
expensive upfront cost

[training the model ]—»[fast approximate solutions]

EEEEEEENTE

(vertical slices are optimization problems)
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How to amortize? The basic pieces

& Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.

Regressmn—Based

flyx '
1. Define an amortization model y,(x) to approximate y*(x)

Example: a neural network mapping from x to the solution o -

2. Define a loss L that measures how well y fits y* ‘

Regression: L(Jy) = E,(y) |75 (x) — y*(II5
Objective: L(Jg) = E, ) f (Pg(x)) W Based
3. Learn the model with rr}gin L(Vg) M
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Existing, widely-deployed uses of amortization

& Tutorial on amortized optimization. Amos, Foundations and Trends in Machine Learning 2023.
Reinforcement learning and control (actor-critic methods, SAC, DDPG, GPS, BC)
Variational inference (VAEs, semi-amortized VAESs)
Meta-learning (HyperNets, MAML)
Sparse coding (PSD, LISTA)

Roots, fixed points, and convex optimization (NeuralDEQs, RLQP, NeuralSCS)

Foundations and Trends® in Machine Learning

Tutorial on amortized optimization
Learning to optimize over continuous spaces
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Overview

Introduction and motivation for amortization
Warmup: reinforcement learning as amortization
Learning update rules
Learning to learn by gradient descent by gradient descent

Learning to learn without gradient descent by gradient descent

Meta Optimal Transport and Meta Flow Matching

Brandon Amos On amortized optimization for RL, Bayesian optimization, and biology 12



Reinforcement learning

For every state x encountered, maximize the value function (0

L7 g X10 Ti11 T12

7T(X1)/ (xg) (x1;)
value
action action action
m(x;) = argmax Q (x;, u) m(xs) = argmax Q (xq, u) (xy,) = argmax Q (x;,, U)
u u u
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Reinforcement learning

For every state x encountered, maximize the value function (0)

p(x)

Independently solving from scratch is expensive!!

action

m(x,) = argmax Q (x, u) m(xg) = argmax Q (xg, 1) m(xy,) = argmax Q (x1,, U)
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Policy learning

Learn 1y to predict the solution for every state 4

value

action action action

m(x;) = argmax Q(x;, u) m(xs) = argmax Q (xq, u) (xy,) = argmax Q (x;,, U)
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Policy learning: amortize across states

maxiemize E, Q(x,mg(x))

value

action action action
m(x;) = argmax Q (x{, u) m(xg) = argmax Q(xg, 1) m(xy,) = argmax Q (x1o, U)
u u u
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Policy learning: amortize across states

maxiemize E, Q(x,mge(x))

I very general and powerful idea here

Q could be any repeatedly-solved function (under mild conditions)
e.g., acquisition functions, other decision-making problems

Foundations and Trends® in Machine Learning

Tutorial on amortized optimization
Learning to optimize over continuous spaces
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Overview

Introduction and motivation for amortization
Warmup: reinforcement learning as amortization
Learning update rules
Learning to learn by gradient descent by gradient descent

Learning to learn without gradient descent by gradient descent

Meta Optimal Transport and Meta Flow Matching
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On learning update rules

(many others in the citation graph around these)

NeurlPS 2016 ICML 2017
Learning to learn by gradient descent by gradient Learning to Learn without Gradient Descent by
descent Gradient Descent
Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W. Hoffman, David Pfau, Yutian Chen, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil,
Tom Schaul, Brendan Shillingford, Nando de Freitas Timothy P. Lillicrap, Matt Botvinick, Nando de Freitas
The move from hand-designed features to learned features in machine learning has been We learn recurrent neural network optimizers trained on simple synthetic functions
wildly successful. In spite of this, optimization algorithms are still designed by hand. In this by gradient descent. We show that these learned optimizers exhibit a remarkable
paper we show how the design of an optimization algorithm can be cast as a learning problem, degree of transfer in that they can be used to efficiently optimize a broad range of
allowing the algorithm to learn to exploit structure in the problems of interest in an automatic derivative-free black-box functions, including Gaussian process bandits, simple
way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed control objectives, global optimization benchmarks and hyper-parameter tuning
competitors on the tasks for which they are trained, and also generalize well to new tasks with tasks. Up to the training horizon, the learned optimizers learn to trade-off
similar structure. We demonstrate this on a number of tasks, including simple convex exploration and exploitation, and compare favourably with heavily engineered
problems, training neural networks, and styling images with neural art. Bayesian optimization packages for hyper-parameter tuning.
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Learning to learn by gradient descent by
gradient descent

Start with gradient descent: Learn g by amortizing across objectives:

gt—l—l = 975 — ()ftVf(gt)
Replace the update with a learned rule (an LSTM):

011 =0+ g:(Vf(6),0) -

L(g) =Es[£(67(£,9))]

t2 t-1: t:

ft-2

A
et-2
T

Optimizee

5 | g | g 20 40 60 80 100 120
S R Step

-2
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Learning to learn by gradient descent by
gradient descent

Start with gradient descent: Learn g by amortizing across objectives:

— By [£(6°(£,9)]

Ori1 = 0: — 0V F(6,)

Replace the update with a learned rule (an LSTM):

v =X, 9:(V1(60;), 0 =7
L+ T ];(V/( ‘F)' ’ ) Il'identical to amortization for policies in RL

E REEE RN

i max19mlze E, Q(x,mg(x))
' S

Step
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Learning to learn without gradient descent by gradient descent

—
T~
-~
~
-~

-

Now start with black-box Bayesian optimization T N . )
(e.g., for experimental design)

¥ acquisition max

T~ acquisition function (u(-))

/ posterior mean (u( -))

posterior uncertainty
() £0() y

— T~

Source: Shallow Understanding on Bayesian Optimization, Ramraj Chandradevan
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Learning to learn without gradient descent by gradient descent

Now start with black-box Bayesian optimization

Challenges (again):
1. Solving one optimization problem is hard K
2. Many acquisition function choices @) @

— Pl
— El
UCB

- PES

Source: Shallow Understanding on Bayesian Optimization, Ramraj Chandradevan
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Learning to learn without gradient descent by gradient descent

standard Bayesian optimization

Now start with black-box Bayesian optimization

1.0
Challenges (again): 0.8 _
1. Solving one optimization problem is hard K 0.6 1
2. Many acquisition function choices @) @ 8;1 i
0.0 - — |
—

This paper: learn the updates (again with amortization)

L(g) =E; |f(60"(£,9))]

0.8 -
0.6
0.4 -
0.2 1
0.0 -

0.0 02 04 06 08 1.0

T

40

30

20

10

0

learned updates (solves fast)

40
- 30
- 20

- 10

0

Brandon Amos On amortized optimization for RL, Bayesian optimizatic 0.0 0.2 04 06 08 1.0 24



Overview

Introduction and motivation for amortization
Warmup: reinforcement learning as amortization
Learning update rules
Learning to learn by gradient descent by gradient descent

Learning to learn without gradient descent by gradient descent

Meta Optimal Transport and Meta Flow Matching
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Motivation: transporting between populations

&£ Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurlPS 2022.

cancer
drugs

e
cell data @ @
. Y

space I ;

Image source: Bunne et al.

@ I tumor sample

of a patient
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Motivation: transporting between populations

&£ Supervised Training of Conditional Monge Maps. Bunne, Krause, Cuturi, NeurlPS 2022.
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Optimal transport problems

Monge (primal, Wasserstein-2)

T*(a,B) € argmin E,_q|[x — T(x)|l5
TeC(a,B)

a, f are measures C(a, ) isthe set of valid couplings T is a transport map from a to 8
TN

©)

Image source:
8 0n amortizing convex conjugates for optimal transport. Amos, ICLR 2023.

a
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Optimal transport problems

Monge (primal, Wasserstein-2)

T*(a, B) € argmin E,_,|lx — T(x)|[5
TeC(a,f)

a, S are measures C(a, ) isthe set of valid couplings T is a transport map from a to

Challenge: solving even once is hard

On amortized optimization for RL, Bayesian optimization, and biology 29



Real world: repeatedly solve

Supply—demand transport Pa_irs of images_ | Cell transport
‘ ? l_/ _7" 3; P’ H ' 96 é ‘ tEra;car;apda)t;)eani:Shas~250d.fferent(control,

O ? b { 6 C‘l 7 q 7‘ 3 \ Contrdl ° Treated '
505255668 Y e
4446934130 @% ) ——Es) e
,79/16—@8!6 (ooe) s (a0e) :1|1
772835670314 L NG (85 =
A3 9440 b9gy .
150040393 <}ﬁ,. ;. o
28577484177 L OOt
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Meta Optimal Transport

& Meta Optimal Transport. Amos, Cohen, Luise, Redko, ICML 2023.

Idea: predict the solution to OT problems with amortized optimization
Simultaneously solve many OT problems, sharing info between instances

Monge (primal, Wasserstein-2)

T*(a,B) € argmin E,_,llx — T(x)|l5
22 TeC(a,B)

Tg (, ,B) (parameterize dual potential via an MLP)

we also consider other/discrete OT formulations

Brandon Amos On amortized optimization for RL, Bayesian optimization, and biology
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Meta OT for Discrete OT (Sinkhorn)

& Meta Optimal Transport. Amos, Cohen, Luise, Redko, ICML 2023.
& Sinkhorn Distances: Lightspeed Computation of Optimal Transport. Cuturi, NeurIPS 2013.

MNIST

0.2 -
—
o
=
= 0.1~

0.0 - Table 1. Sinkhorn runtime (seconds) to reach a marginal error of

' (') 5 10 15 20 2'5 1072, Meta OT’s initial prediction takes =~ 5 - 10~° seconds. We
. . report the mean and std across 10 test instances.
Sll’lkhOI‘n Iterations Initialization | MNIST Spherical
. Zeros (tperes) | 4.5-107% +£1.5.107%  0.88 +0.13
Spherlcal Gaussian | 4.1-1073 +12.10°° 0.56 +£9.9. 10~
Meta OT (tyfera) | 2.3-1073 4921079 7.8.1072 £3.4. 102

1.0 = Improvement (¢5eros /tMeta) | 1.96 11.3
-
o
—_ -
3 0.5

0.0 C IL | 1 1 T |

0 200 400 600 800 1000

Sinkhorn Iterations
Initialization (M Zeros M Gaussian (Thornton and Cuturi, 2022) M Meta OT)
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Meta Flow Matching

& Meta Flow Matching. Atanackovic, Zhang, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov, ICLR, 2025.

Standard flow matching Meta flow matching

& Flow Matching for Generative Modeling. Lipman et al., ICLR 2023.

& Flow Straight and Fast. Liu, Gong, Liu, ICLR 2023, . . - .
& Stochastic interpolants. Albergo et al., 2023. Amortize ﬂOWS glven Condlthnlng ¢

(similar to text-conditioned diffusion)

Inein IEt,n'(xO,xl) ”uH (t) xt) — U (Xle, xl) ” 2

rr}gin Et ¢, xomq]0) lug (¢, x¢lc) — ue(xlxo, %1, OI?

|
t=1.00 target a

Test

source t=0.50

. Cell data
ol % Woa
P . FM 2.947 + 0.050
ICNN 2.996 +=0.033
CGFM 2.938 + 0.020
Image source: Fjelde, Mathieu, Dutordoir. . MFM (k = 0)  2.685 + 0.122
https://mlg.eng.cam.ac.uk/blog/2024/01/20/flow-matching.html MFM (:I.” =10) 2.610+0.073
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Concluding thoughts

optimal action cost context

I | I
yg(x) = y*(x) € argmin f(y; x)
Slow thinking (system 2): formulating and solving it | yEC(x)

< p s _ . el amortized solution | |
Fast thinking (system 1): amortizing and distilling it actions action space

Optimization-based reasoning a foundation for Al systems

Many instances of us manually amortizing

Future Al systems (?) Actor

automatically formulating and amortizing optimization problems
understanding the right abstraction (latent space) and objectives
developing intrinsically and extrinsically motivated problems

_Image source:
& A path towards autonomous machine intelligence. LeCun, 2022.
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Other amortization we’ve been up to

amortized sampling amortized LLM attacks amortized OT, geodesics

AdjOint Samp“ng: Highly Scalable DifoSion AdVPrOI:n pter: Fast Adaptive Adversarial Neural Optimal Transport with Lagrangian Costs
Samplers via Adjoint Matching Prompting for LLMs

Anselm Paulus®*°, Arman Zharmagambetov'®, Chuan Gua’, Brandon Amos'-', Yuandong Tian':!

Aaron Havens”1* | Benjamin Kurt Miller'*, Bing Yan!~**  Carles Domingo-Enrich?, Anuroop Sriram!, ) . . o

Brandon Woad®, Daniel Levine', Bin Hu?, Brandon Amos Brian Karrer!, Xiang Fu'**, Guan-Horng Liu paTlatMeral(FATR); AM“'PM‘:I"I“':‘““FB for Ttelligent Syetems, Tabingen, Germany Aram-Alexandre Pooladian'®  Carles Domingo-Enrich™®  Ricky Tian Qi Chen®  Brandon Amos®
1, *Work done at Meta, ®Joint first author, "Joint last author

Rlckv Rachen 'Center for Data Science, New York University

'FAIR at Meta, 2University of Illinois, *New York University, ‘Microsoft Research New England “Courant Institute DfM“u'ﬁrgl:'i‘;ﬂj:::““‘ New York University
*Core contributors, 'Work done during internship at FAIR
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On amortized optimization for RL, Bayesian

optimization, and biology

Brandon Amos - Meta, NYC

Introduction and motivation for amortization
Warmup: reinforcement learning as amortization
Learning update rules

Learning to learn by gradient descent by gradient descent
Learning to learn without gradient descent by gradient descent

slides

Meta Optimal Transport and Meta Flow Matching
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