
On transport, flows, and physics
Brandon Amos
bamos.github.io/presentations

In collaboration with Samuel Cohen, Arnaud Fickinger, Stuart Russell, Aram-Alexandre Pooladian, Doron Haviv, 
Dana Pe’er, Carles Domingo-Enrich, Ricky Chen, Lazar Atanackovic,  Xi Zhang,  Mathieu Blanchette,  Leo J. 
Lee, Yoshua Bengio, Alexander Tong, Kirill Neklyudov



To start: some preliminaries
(Optimal) transport and flows 

Find map  such that T T#p0 ≈ p1

2

“Physics” in this talk 

differential equations     🙃·xt = f(xt)
⚠ & for me as a non-physicist

x0 x1

Figure 2: A function xt ( ) providing a path between x0 and x1 with time derivatives ẋt ( ).

The first step is to understand how to mathematically represent the changing states of a system over
time, e.g. a pendulum swinging or a ball bouncing over time. Time is often represented as a real-valued
number t 2 R and interpreted as the relative time that has passed since some reference time, e.g. in seconds
or milliseconds. The state of a system is represented as a parametric function of time, e.g. x : I ! Rm where
I is an interval. A common notational convention is to notate this function with a subscript, i.e. xt := x(t),
and the derivative with respect to time at a point t using Newton’s dot notation, i.e. ẋt : I ! Rm. The
values of states over time are referred to as trajectories and create curves or paths. Figure 2 shows an
example of a 2-dimensional trajectory xt along with the derivatives ẋt and components across each spacial
dimension x0 and x1. In this note, the state space of the system is taken to be the Euclidean space Rm for
simplicity, but this makes it di�cult to capture non-Euclidean geometries such as rotational geometries that
the states of a system may live in — extensions for these non-Euclidean spaces are discussed in texts such
as Bullo and Lewis [2019].

Now given observations of a physical process over time, one can create a theory of how the motion was
produced by specifying xt, e.g. Newtonian mechanics for rigid-body motion. While there are many ways of
defining xt, a first-order ordinary di↵erential equation (ODE) is capable of expressing many deterministic
physical systems, which for the purposes of this note can be defined with:

Definition 1 An uncontrolled first-order dynamical system is modeled by a first-order di↵erential

equation ẋt = f(xt) for t � 0. States xt can be obtained by specifying an initial time and state and solving

an initial value problem. For example, if the initial state x0 is specified at time t = 0, the trajectory of states

for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs)ds. (1)

The dynamics of many deterministic systems in isolation are well-studied and classical topics throughout
physics and mechanics that are captured by definition 1. The ODE is usually written as a first-order system
to have a standard form — this is not limiting because any higher-order system can be transformed into a
first-order system. First-order systems can also be extended to geometries beyond Euclidean spaces, e.g. as
in Bullo and Lewis [2019].

We can now passively observe and model a first-order dynamical system with an ODE; the next step is to
define a way of interacting with the system that influence where the states are going to go. This is often an
important design decision when building systems as there could be many possible options for interacting with
it. For a robotic system, interaction may come from applying torques to the joints, varying the forces from
actuators, engines, or thrusters of an aircraft, changing the temperatures of a chemical system, or changing
the orientation of a steering wheel, rudder, or thruster. To do this, a control signal is usually added to the
model and separated from the other variables:

Definition 2 A controlled first-order dynamical system is a first-order dynamical system with states

xt : I ! R
m

where the first-order dynamics have an additional dependency on a control, or action, which
is a parametric function of t, i.e. ut : I ! Rn

. The ODE is specified by ẋt = ft(xt, ut) and can be integrated

as before, e.g. given an initial state x0, and controls ut, the trajectory of states for t > 0 is given by

xt = x0 +

Z
t

0
fs(xs, us)ds. (2)
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TODO
(Indirect) definition 3 ! optimality conditions (Hamilton-Jacobi-Bellman (PDE), Pontryagin’s principle

(ODE)) ! Discretize and solve
(Direct) definition 3 ! discretize to

argmin
z2Rp

g(z) subject to z 2 Cz (7)

Figure 7: TODO: continuous optimal control solutions

x0 x1

sampled trajectories mean trajectory E[xt]

Figure 8: TODO: sde

2.1.4 Solving discrete-time problems

TODO: Standard, show notation, point to other LQR/MPC references
box-DDP [Tassa et al., 2014]

2.2 Stochastic dynamics and control

stochastic process Gallager [2013]

2.2.1 . . . in continuous time

SDE books Øksendal and Øksendal [2003], Evans [2012]

Definition 5 (Controlled SDE dynamics)

dxt = ft(xt, ut)dt+ Ft(xt, ut)dWt (9)

(TODO: ẋ velocities) Integrating the SDE gives

xt = x0 +

Z
t

0
fs(xs, us)ds+

Z
t

0
Ft(xs, us)dWs (10)

controlled Itô di↵usion

[Yong and Zhou, 1999] [Fleming and Rishel, 2012] Finance [Touzi, 2010] [Frankowska et al., 2018]

Definition 6 (Continuous-time stochastic control) TODO

[Bonnans and Silva, 2012] PMP risk-averse stochastic OC problems [Bonalli and Bonnet, 2023]

2.2.2 . . . in discrete time

TODO
[Bertsekas and Shreve, 1996] [Tedrake, 2023, Chapter 14]
[Mesbah, 2016]
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e.g., the Newton-Euler equations of motion 
M(qt)··qt + n(qt, ·qt) = τ(qt) + But

Mechanics is the paradise of the mathematical 
sciences because by means of it one comes to 
the fruits of mathematics. 
—da Vinci (found in Bullo & Lewis)

📚 On amortizing convex conjugates. Amos, ICLR 2023.

Wasserstein manifold

e.g., EMD, Wasserstein distance, diffusion models



This talk
Physics-tangential extensions and applications 

Three lightning sub-talks—slightly niche but interesting topics 

Goals: 
  1. share from the ML side so you can understand capabilities 
  2. hopefully inspire new ideas and applications :)
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This talk
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Transport for Imitation Learning

📚 Gromov-Wasserstein Imitation

Non-Euclidean Transport

📚 Lagrangian Optimal Transport

Meta and Wasserstein Flows

📚 Meta Flow Matching 
📚 Wasserstein Flow Matching



Motivation: matching states in a physical system
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expert
state-action distributions

agent

(aka imitation learning)



One way: use optimal transport
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ICLR 2021

expert
state-action distributions

agent

Wp(p0, p1) := inf
T:X → X
T#p0 = p1

(∫X
c(x, T(x))p dp0(x))

1
p

 ⚠ Challenge: what if the state-action spaces are not aligned? 
          e.g., the cross-domain setting—human–robot transfer, cross-robot transfer 



Use the Gromov-Wasserstein Distance!
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📚 Entropic metric alignment for correspondence         
     problems. Solomon et al., SIGGRAPH 2016.

📚 Cross-domain imitation learning via optimal transport. 
     Fickinger, Cohen, Russell, Amos, ICLR 2022.

Compares pairwise distances between the spaces (metric-measure spaces)

GWp((X, dX, p0), (Y, dY, p1)) = inf
T:X → Y
T#p0 = p1

(∬X×X
dX(x, x′￼) − dY(T(x), T(x′￼))

p
dp0(x) dp0(x′￼))

1
p

📚 Gromov-Wasserstein distances. Memoli, Foundations of Computational Mathematics, 2011.



Results transferring from one system to another
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📚 Cross-domain imitation learning via optimal transport. Fickinger, Cohen, Russell, Amos, ICLR 2022.

Expert

Agent

Expert

Agent



We published it, and then… 😱
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ICLR 2022 (April)



Thankfully the issue was minor
We forgot to include the pushforward term in our isomorphic definition (sorry) 😅
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Published as a conference paper at ICLR 2022

Figure 1: The Gromov-Wasserstein distance enables us to compare the stationary state-action distri-
butions of two agents with different dynamics and state-action spaces. We use it as a pseudo-reward
for cross-domain imitation learning.

Figure 2: Isomorphic policies (definition 2) have the same pairwise distances within the state-action
space of the stationary distributions. In Euclidean spaces, isometric transformations preserve these
pairwise distances and include rotations, translations, and reflections.

we call Gromov Wasserstein Imitation Learning (GWIL), that uses the Gromov-Wasserstein distance
to solve the benchmark. We formally characterize the scenario where GWIL preserves optimality
(theorem 1), revealing the possibilities and limitations. The construction of our proxy rewards to
optimize optimal transport quantities using RL generalizes previous work that assumes uniform
occupancy measures (Dadashi et al., 2020; Papagiannis & Li, 2020) and is of independent interest.
Our experiments show that GWIL learns optimal behaviors with a single demonstration from another
domain without any proxy tasks in non-trivial continuous control settings.

2 RELATED WORK

Imitation learning. An early approach to IL is Behavioral Cloning (Pomerleau, 1988; 1991) which
amounts to training a classifier or regressor via supervised learning to replicate the expert’s demon-
stration. Another key approach is Inverse Reinforcement Learning (Ng & Russell, 2000; Abbeel &
Ng, 2004; Abbeel et al., 2010), which aims at learning a reward function under which the observed
demonstration is optimal and can then be used to train a agent via RL. To bypass the need to learn
the expert’s reward function, Ho & Ermon (2016) show that IRL is a dual of an occupancy measure
matching problem and propose an adversarial objective whose optimization approximately recover
the expert’s state-action occupancy measure, and a practical algorithm that uses a generative ad-
versarial network (Goodfellow et al., 2014). While a number of recent work aims at improving this
algorithm relative to the training instability caused by the minimax optimization, Primal Wasserstein
Imitation Learning (PWIL) (Dadashi et al., 2020) and Sinkhorn Imitation Learning (SIL) (Papagian-
nis & Li, 2020) view IL as an optimal transport problem between occupancy measures to completely
eliminate the minimax objective and outperforms adversarial methods in terms of sample efficiency.
Heess et al. (2017); Peng et al. (2018); Zhu et al. (2018); Aytar et al. (2018) scale imitation learn-
ing to complex human-like locomotion and game behavior in non-trivial settings. Our work is an
extension of Dadashi et al. (2020); Papagiannis & Li (2020) from the Wasserstein to the Gromov-
Wasserstein setting. This takes us beyond limitation that the expert and imitator are in the same
domain and into the cross-domain setting between agents that live in different spaces.

Transfer learning across domains and morphologies. Work transferring knowledge between dif-
ferent domains in RL typically learns a mapping between the state and action spaces. Ammar et al.
(2015) use unsupervised manifold alignment to find a linear map between states that have similar

2



Easy fix, everybody happy 🎉
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4 days later



This talk
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Non-Euclidean Transport

📚 Lagrangian Optimal Transport

Meta and Wasserstein Flows

📚 Meta Flow Matching 
📚 Wasserstein Flow Matching

Transport for Imitation Learning

📚 Gromov-Wasserstein Imitation



Motivation: transport under physical constraints
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Physical obstacles

Bird population dynamics

Other obstacles

Cell population dynamics

Wp(p0, p1) := inf
T:X → X
T#p0 = p1

(∫X
c(x, T(x))p dp0(x))

1
p

📚 Riemannian Metric Learning via Optimal Transport. 
    Scarvelis and Solomon, ICLR 2023.

📚 Deep Generalized Schrödinger Bridge. 
     Liu et al., NeurIPS 2022.



Focus: minimum-action Lagrangian paths
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x0

x1



How to solve?
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📚 Neural Optimal Transport with Lagrangian Costs. Pooladian, Domingo-Enrich, Chen, Amos, UAI 2024.

neural network
📚 On amortizing convex conjugates. 
     Amos, ICLR 2023.

neural network
like other neural OT

neural network
predict parameters of a spline

📚 Deep Legendre Transform. 
     Minabutdinov, Cheridito. NeurIPS 2025.

Other applications to HJB, see also:

And then? Can also learn the cost/metric with all of this as a subproblem 
min

c
J(T⋆(c))



Aside: predicting solutions to optimization problems
Reinforcement learning and control 
actor-critic methods, SAC, DDPG, GPS, BC 

Variational inference 
VAEs, semi-amortized VAEs 

Meta-learning 
HyperNets, MAML 

Sparse coding 
PSD, LISTA 

Roots, fixed points, and convex optimization 
NeuralDEQs, RLQP, NeuralSCS 

Optimal transport 
slicing, conjugation, Meta Optimal Transport
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Lagrangian Transport Results
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Metric Learning Results
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This talk

19

Transport for Imitation Learning

📚 Gromov-Wasserstein Imitation

Non-Euclidean Transport

📚 Lagrangian Optimal Transport

Meta and Wasserstein Flows

📚 Meta Flow Matching 
📚 Wasserstein Flow Matching



So far: single distribution to single distribution
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Wasserstein manifold



Next: multiple distributions 🚀
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Wasserstein manifold

📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Background and Motivation
Scientific goal: understand and model the dynamics of many-body systems  
(the dynamic evolution of interacting particles) 

E.g. the dynamic processes cells undergo w.r.t. their environment and 
interactions with each other

22

𝑝𝑡
𝑝0

𝑝1

📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Background and Motivation
We want to model the dynamics of particles (or cells) at the population level. 

Many methods do this:
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They typically assume the evolution of cells are independent particles

Tong et al. 
ICML, 2020 Bunne et al. 

Nature Methods, 2023 Neklydov et al. 
ICML, 2024Schiebinger et al. 

Cell, 2019

📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Background and Motivation
We would also like a model that can generalize across measures (populations) 
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Existing methods are typically restricted to a single measure (population, patient)

unseenunseenunseen

. 

. 

.

observed data x0 ∼ p0 x1 ∼ p1

📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Problem setup
We want a model that can: 
1. model the evolution of particles while taking into account their interactions
2. generalize across unseen populations
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Assumptions. 
1. Coupled distribution/population pairs  
2. The collected data undergoes a universal developmental process 
     depends only on the population itself 
     e.g., interacting particles or communicating cells

{(𝑝0(𝑥0 | 𝑖), 𝑝1(𝑥1 | 𝑖))}𝑁
𝑖=1

𝑝0

𝑝1

📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Meta Flow Matching

26📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Meta Flow Matching
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A model to learn to represent the population 
GCN w/ knn edge pooling

(𝑥(𝑡0), 𝑡0)

𝜑(𝑝0, 𝜃)

h

𝜑(𝑝0, 𝜃)

𝜑(𝑝0, 𝜃)

…

𝑣𝑡(𝑥, h, 𝑐; 𝜔)

(𝑥(𝑡0), 𝑡0)

𝑐

h = 𝜑(𝑝0, 𝜃)
 approximates the population dynamics given 

1. representation of the population, and 
2. additional seen conditions  
    e.g. treatments applied to population

𝑣

𝑐

 captures particle interactions𝜑(𝑝0, 𝜃)
📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Synthetic Example
Paired joint distributions   

Target distributions  for  (letter silhouettes) 

To get  we simulate a forward diffusion process 

⚠ not images, but renderings of 2D particle systems

{(𝑝0(𝑥0 | 𝑖), 𝑝1(𝑥1 | 𝑖))}𝑁
𝑖=1

𝑝1(𝑥1 | 𝑖) 𝑖 = 1,…, 𝑁

𝑝0(𝑥0 | 𝑖)

28

source target

Train: 24 letters (excluding ‘Y’ and ‘X’)
source target

Test: ’Y’ and ‘X’

📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Synthetic Setting Results
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MFM learns to represent entire populations, 
hence generalizes across unseen populations

𝑣𝑡(𝑥, h; 𝜔)

(𝑥(𝑡0), 𝑡0)

h = 𝜑(𝑝0, 𝜃)

Train

Test

📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Synthetic Setting Results

30📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Biological data—patient-specific organoid drug screen dataset
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(Zapatero et al, Cell, 2023)

10 patients, 11 treatments, varying doses, 3 
different cell cultures … up to 2500 different 
environmental conditions! (we use ~ 1000)

. 

. 

.

Control Treated

𝑥1 |𝑐1

. 

. 

.

𝑥1 |𝑐2

𝑥1 |𝑐𝑘

Treatments

Data we observe

𝑥0 ∼ 𝑝0 𝑥1 ∼ 𝑝1

Each patient has ~250 different (control, treated) pairs Mass Cytometry

📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Organoid Drug Screen Data

32📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



Organoid Drug Screen Results

33📚 Meta Flow Matching. Atanackovic*, Zhang*, Amos, Blanchette, Lee, Bengio, Tong, Neklyudov. ICLR 2025.



So far: pairs of distributions
Meta FM assumes coupled pairs of distributions
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Control Treated

source target



Can we learn a flow on the Wasserstein manifold? Yes!
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📚 Wasserstein Flow Matching. Haviv, Pooladian, Pe’er, Amos. NeurIPS 2025.



Transport, but each point is a distribution
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📚 Wasserstein Flow Matching. Haviv, Pooladian, Pe’er, Amos. NeurIPS 2025.



Ok transport ❤ physics, now what?
The usual ones: scale, applications, extensions 
For example, drug discovery, other population and particle dynamics
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Ok transport ❤ physics, now what?
The other usual one: AGI 
  1. Integrate broader knowledge and information into the transports 
  2. Language models can’t solve transport problems (at least not yet…)
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Ok transport ❤ physics, now what?
The other usual one: AGI 
  1. Integrate broader knowledge and information into the transports 
  2. Language models can’t solve transport problems (at least not yet…)
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